2013
SU‐E‐T‐462: Energy Modulated Photon Radiotherapy: A Monte Carlo Investigation
Zhang Y, Feng Y, Ming X, Nath R, Deng J. SU‐E‐T‐462: Energy Modulated Photon Radiotherapy: A Monte Carlo Investigation. Medical Physics 2013, 40: 311-311. DOI: 10.1118/1.4814895.Peer-Reviewed Original ResearchIMRT plansProstate cancer patientsPhoton radiation therapyBeam energyPhoton beamsCancer patientsNeck cancerPrescription doseEclipse treatment planning systemDose reductionRadiation therapyBEAM Monte Carlo codePencil beam dose distributionsDVH analysisTumor sitePhoton radiotherapyDose distributionNormal tissuesPatientsLow-energy photonsPhoton beam intensityBeam dose distributionsTarget coverageOptimal beam energyIntegral dose
2008
SU‐GG‐T‐493: Dosimetric Impact of Beam Energy and Number of Photon Fields On Prostate Dose Distributions: Inverse Planning and Validation Study
Ahmad M, Lund M, Halpin H, Deng J, Chen Z, Mani S, Moran M, Nath R. SU‐GG‐T‐493: Dosimetric Impact of Beam Energy and Number of Photon Fields On Prostate Dose Distributions: Inverse Planning and Validation Study. Medical Physics 2008, 35: 2838-2838. DOI: 10.1118/1.2962242.Peer-Reviewed Original ResearchPlanning target volumeComputerized tomographyTreatment planIMRT techniqueTarget volumeNormal tissuesIrradiated normal tissueDose distributionSuperior dose distributionProstate target volumeInverse planningProstate cancerProstate carcinomaLesser dosesSample patientsBeam arrangementsDose constraintsDosimetric differencesPatientsDose uniformityProstate patientsIMRT plansDosimetric impactIntegral doseInverse planning process
2006
SU‐FF‐T‐361: Planning Study of Intensity‐Modulated and 3D Conformal Radiotherapy of Whole Pelvis Including Inguinal Lymphatics: Radiobiological Considerations for Designing New Fractionation Schemes
Ahmad M, Song H, Lund M, Niemierko A, Moran M, Weidhaas J, Higgins S, Chen Z, Deng J, Nath R. SU‐FF‐T‐361: Planning Study of Intensity‐Modulated and 3D Conformal Radiotherapy of Whole Pelvis Including Inguinal Lymphatics: Radiobiological Considerations for Designing New Fractionation Schemes. Medical Physics 2006, 33: 2129-2129. DOI: 10.1118/1.2241281.Peer-Reviewed Original ResearchNormal tissue complication probabilityNode irradiationTumor control probabilityEquivalent uniform doseSIB-IMRTBoost plansTarget volumeNormal tissuesSimultaneous integrated boostShorter treatment durationIntensity-modulated radiotherapyPotential clinical advantagesAnal cancerSuperior dose distributionDose distributionDose escalationPrimary diseasePelvic malignanciesAdvanced tumorsWhole pelvisPrimary tumorSubclinical diseaseImproved outcomesIntegrated boostConformal radiotherapy
2003
A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment
Ma C, Ding M, Li JS, Lee MC, Pawlicki T, Deng J. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment. Physics In Medicine And Biology 2003, 48: 909-924. PMID: 12701895, DOI: 10.1088/0031-9155/48/7/308.Peer-Reviewed Original ResearchConceptsIntensity-modulated radiation therapyTangential photon beamsContralateral breastBreast cancerRadiation therapyTreatment planMaximum doseBreast cancer treatmentTreatment optimizationComparative dosimetric studyBreast treatment plansPhoton treatment plansPhoton beamsElectron radiotherapySuperficial targetsMultiple beam anglesLungMedium dosesDose conformityTangential beamsNormal tissuesCancer treatmentMERT plansIMRT plansMV photon beam
2001
Incorporate organ motion into MLC leaf sequencing for intensity modulated radiation therapy
Deng J, Guerrero T, Ding M, Jolly J, Pawlicki T, Ma C. Incorporate organ motion into MLC leaf sequencing for intensity modulated radiation therapy. International Journal Of Radiation Oncology • Biology • Physics 2001, 51: 92-93. DOI: 10.1016/s0360-3016(01)01994-0.Peer-Reviewed Original ResearchBreathing patternNormal tissuesRadiation therapyOrgan motionSmaller treatment marginsIMRT plansBreast cancer patientsBreast cancer treatmentAdjacent normal tissuesNormal tissue sparingTarget dose uniformityBreast motionTarget dose conformityBreathing cycleTarget dose distributionCritical structuresHigher complicationsCancer patientsIMRT dosesLow doseTypical breathing patternHigh doseClinical advantagesDose coverage
2000
Including setup uncertainty in Monte Carlo dose calculation for IMRT
Pawlicki T, Jiang S, Li J, Deng J, Ma C. Including setup uncertainty in Monte Carlo dose calculation for IMRT. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society 2000, 1: 112-115 vol.1. DOI: 10.1109/iembs.2000.900682.Peer-Reviewed Original ResearchIntensity-modulated radiotherapySetup uncertaintiesNormal tissuesPatient positioning uncertaintiesTherapeutic doseRadiation therapyConcomitant doseClinical casesDose distributionDose calculationsDose homogeneityAUTHORS' CONCLUSIONSTarget coverageCritical structure doseRadiotherapy treatmentDoseMonte Carlo dose calculationsIMRT dose distributionsAuthors' initial resultsModulated Electron Beams for Treatment of Breast Cancer
Ma C, Pawlicki T, Lee M, Jiang S, Li J, Deng J, Yi B, Mok E, Boyer A. Modulated Electron Beams for Treatment of Breast Cancer. 2000, 173-175. DOI: 10.1007/978-3-642-59758-9_64.Peer-Reviewed Original ResearchContralateral breastBreast cancer treatmentChest wall treatmentSuch conventional treatmentHigh-dose volumeTangential photon fieldsTumor locationBreast cancerSecondary cancersEffective modalityRadiation therapyLow doseConventional treatmentNormal tissuesCancer treatmentPatient sizeMajor causeLungDoseTreatmentNormal structureCancerBreastHeartScatter dose