Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation
Chen H, Wang Y, Rayudu P, Edgecomb P, Neill J, Segal M, Lipton S, Jensen F. Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 1998, 86: 1121-1132. PMID: 9697119, DOI: 10.1016/s0306-4522(98)00163-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBody TemperatureBrain IschemiaCytoplasmExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsIn Vitro TechniquesLong-Term PotentiationMaleMaze LearningMemantineMicroscopy, ElectronNeuronsNeuroprotective AgentsRatsRats, Sprague-DawleyReceptors, N-Methyl-D-AspartateVacuolesConceptsN-methyl-D-aspartate antagonistsLong-term potentiationAspartate antagonistDizocilpine maleateSide effectsUncompetitive N-methyl-D-aspartate antagonistsN-methyl-D-aspartate blockersMorris water maze performancePost-ischemic administrationHypoxia/ischemiaExcitatory postsynaptic currentsN-methyl-D-aspartate (NMDA) channelsAdverse side effectsWater maze performanceHuman CNS disordersExcitotoxic disordersNeuroprotective concentrationsClinical tolerabilityNeuroprotective dosesClinical efficacyInfarct sizePostsynaptic currentsHippocampal slicesCNS disordersAdult rats
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply