2010
Deformable left‐ventricle mesh model for motion‐compensated filtering in cardiac gated SPECT
Marin T, Brankov J. Deformable left‐ventricle mesh model for motion‐compensated filtering in cardiac gated SPECT. Medical Physics 2010, 37: 5471-5481. PMID: 21089783, PMCID: PMC2962663, DOI: 10.1118/1.3483098.Peer-Reviewed Original ResearchConceptsCardiac gated SPECTMesh modelNoise reductionMotion-compensated filteringCardiac gated SPECT imagingDeformable mesh modelTested clinical dataSignal-to-noise ratioMotion estimationMotion blurring artifactsEstimated motionImage-reconstruction methodsProcessing algorithmsSpatiotemporal filtering methodSpatiotemporal filteringMotion trajectoryFiltering approachMyocardium motionFiltering methodReduce noiseImage qualityTemporal correlationProcessing techniquesNoisePhoton dataMOTION-COMPENSATED RECONSTRUCTION OF GATED CARDIAC SPECT IMAGES USING A DEFORMABLE MESH MODEL
Marin T, Wernick M, Yang Y, Brankov J. MOTION-COMPENSATED RECONSTRUCTION OF GATED CARDIAC SPECT IMAGES USING A DEFORMABLE MESH MODEL. 2010, 520-523. DOI: 10.1109/isbi.2010.5490294.Peer-Reviewed Original ResearchDeformable mesh modelGated cardiac SPECT imagesMesh modelMotion estimation techniquesMotion trajectoryTemporal smoothness constraintMaximum-likelihood expectation-maximization algorithmExpectation-maximization algorithmEstimated motionMotion-compensated reconstructionMotion compensationLevel of noiseSmoothness constraintPixel gridTemporal constraintsTemporal filteringReconstruction algorithmReconstructed imagesMesh domainCardiac SPECT imagingAlgorithmNoise reductionTemporal correlationNoise effectsIteration
2007
Who is IT? Inferring Role and Intent from Agent Motion
Crick C, Doniec M, Scassellati B. Who is IT? Inferring Role and Intent from Agent Motion. 2007, 134-139. DOI: 10.1109/devlrn.2007.4354065.Peer-Reviewed Original Research
2003
Investigating Models of Social Development Using a Humanoid Robot (Invited Paper)
Scassellati B. Investigating Models of Social Development Using a Humanoid Robot (Invited Paper). 2003, 4: 2704-2709. DOI: 10.1109/ijcnn.2003.1223995.Peer-Reviewed Original ResearchHumanoid robotLow-level perceptual abilitiesHuman social dynamicsVisual saliencyLearning mechanismObject attributesRobotMotion trajectoryHuman performanceReal-timeHumanoidAnimate objectsAttentional stateTask constraintsHigh-level cognitive skillsArchitectureSocial learning mechanismsPhysical lawsTaskInanimate movementObjectivePerceptual abilitiesInvestigated modelsSalienceConstraints
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply