2025
Molecular detection and characterization of Rickettsia felis, R. asembonensis, and Yersinia pestis from peri-domestic fleas in Uganda
Eneku W, Erima B, Maranda A, Gillian N, Atim G, Tugume T, Aquino Q, Kibuuka H, Mworozi E, Douglas C, William J, von Fricken Emery M, Tweyongyere R, Wabwire-Mangen F, Karuhize D. Molecular detection and characterization of Rickettsia felis, R. asembonensis, and Yersinia pestis from peri-domestic fleas in Uganda. Infection Ecology & Epidemiology 2025, 15: 2473159. PMID: 40041476, PMCID: PMC11878166, DOI: 10.1080/20008686.2025.2473159.Peer-Reviewed Original ResearchZoonotic agentsFlea speciesFlea-borne pathogensR. asembonensisR. senegalensisDomestic animalsRickettsia felisPeridomestic environmentsPublic health riskRainy seasonFleasDry seasonHost speciesMolecular detectionPredominant speciesYear-roundSppSeasonCollection timeHuman dwellingsSpeciesYersinia pestisRodent speciesGoatsSub-Saharan Africa
2024
A low-cost culture- and DNA extraction-free method for the molecular detection of pneumococcal carriage in saliva
Peno C, Lin T, Hislop M, Yolda-Carr D, Farjado K, York A, Pitzer V, Weinberger D, Bei A, Allicock O, Wyllie A. A low-cost culture- and DNA extraction-free method for the molecular detection of pneumococcal carriage in saliva. Microbiology Spectrum 2024, 12: e00591-24. PMID: 39028185, PMCID: PMC11370248, DOI: 10.1128/spectrum.00591-24.Peer-Reviewed Original ResearchDetection of pneumococciDetection of pneumococcal carriagePneumococcal carriageCarriage surveillanceLow-resource settingsChildren attending childcare centersCarriage of pneumococciDNA extractionSaliva samplesMolecular methodsCultural enrichmentImprove surveillance effortsQPCR-based protocolPneumococcal vaccineExtraction-free methodMolecular detectionNucleic acid extractionVaccination strategiesPneumococciCulture-enrichment methodExtraction-free protocolPurified DNASalivaPaired samplesCarriageMolecular detection of Coxiella burnetii in ticks collected from animals and the environment in Uganda
Eneku W, Erima B, Byaruhanga A, Cleary N, Atim G, Tugume T, Ukuli Q, Kibuuka H, Mworozi E, Tweyongyere R, Douglas C, Koehler J, von Fricken M, Wabwire‐Mangen F, Byarugaba D. Molecular detection of Coxiella burnetii in ticks collected from animals and the environment in Uganda. Zoonoses And Public Health 2024, 71: 869-875. PMID: 38982627, DOI: 10.1111/zph.13168.Peer-Reviewed Original ResearchConceptsC. burnetiiPresence of C. burnetiiTransmitting C. burnetiiDetection of Coxiella burnetiiHaemaphysalis ellipticaRhipicephalus decoloratusTick poolsRhipicephalus appendiculatusAmblyomma variegatumHighest infection rateVeterinary practiceTicksAnimal illnessCoxiella burnetiiRhipicephalusQ feverMolecular detectionAnimal hostsAnimal contactReal-time PCRPathogen detectionInfection rateAnimalsDecoloratusAmblyomma
2017
Molecular detection of genes responsible for macrolide resistance among Streptococcus pneumoniae isolated in North Lebanon
Ashkar S, Osman M, Rafei R, Mallat H, Achkar M, Dabboussi F, Hamze M. Molecular detection of genes responsible for macrolide resistance among Streptococcus pneumoniae isolated in North Lebanon. Journal Of Infection And Public Health 2017, 10: 745-748. PMID: 28215918, DOI: 10.1016/j.jiph.2016.11.014.Peer-Reviewed Original ResearchConceptsMacrolide resistance genotypesS. pneumoniaeMacrolide resistanceStreptococcus pneumoniaeS. pneumoniae isolatesUse of macrolidesS. pneumoniae strainsNorth LebanonResistance genotypesCMLSB phenotypePolymerase chain reactionPneumoniae isolatesPneumoniae strainsClinical isolatesPneumoniaeChain reactionEfflux pumpsPhenotypic diagnosisCommon resistance genesMolecular detection
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply