2024
Thursday, July 11, 20244:00 PM - 5:00 PM PP01 Presentation Time: 4:00 PM Investigating Shielding as a Dose-Shaping Tool in Flattening Distal Dose Profiles for Single-Channel Vaginal Cylinders
Tien C, Mullane S, Draeger E, Rivard M, Chen Z. Thursday, July 11, 20244:00 PM - 5:00 PM PP01 Presentation Time: 4:00 PM Investigating Shielding as a Dose-Shaping Tool in Flattening Distal Dose Profiles for Single-Channel Vaginal Cylinders. Brachytherapy 2024, 23: s26-s27. DOI: 10.1016/j.brachy.2024.08.020.Peer-Reviewed Original ResearchModel-based dose calculation algorithmsSingle-channel vaginal cylinderDose profilesDose distributionVaginal cylinderCentral axisCustomized shieldingRegions of high doseAnisotropic dose distributionUniform dose profileDose calculation algorithmWater-equivalent materialDose calculation methodMonte CarloIr-192 seedsDose gridIr-192MC simulationsRelative doseShielding materialsCalculation algorithmSource transitionDose optimizationLateral radiusShielding
2020
A general-purpose Monte Carlo particle transport code based on inverse transform sampling for radiotherapy dose calculation
Liang Y, Muhammad W, Hart GR, Nartowt BJ, Chen ZJ, Yu JB, Roberts KB, Duncan JS, Deng J. A general-purpose Monte Carlo particle transport code based on inverse transform sampling for radiotherapy dose calculation. Scientific Reports 2020, 10: 9808. PMID: 32555530, PMCID: PMC7300009, DOI: 10.1038/s41598-020-66844-7.Peer-Reviewed Original ResearchConceptsPhoton transportBoundary crossing algorithmMonte Carlo particle transport codeMonte Carlo methodTransport simulationsAcceptance-rejection samplingRadiotherapy dose calculationsPhoto-electric effectParticle transport codeEGSnrc simulationsCarlo methodBremsstrahlung eventsInelastic scatteringPair productionRayleigh scatteringThread divergenceMC simulationsTransport codeMC codeHistory schemeParticle transportCrossing algorithmInverseElectron transportSimulation accuracy
2019
Beam modeling and beam model commissioning for Monte Carlo dose calculation‐based radiation therapy treatment planning: Report of AAPM Task Group 157
Charlie C, Chetty IJ, Deng J, Faddegon B, Jiang SB, Li J, Seuntjens J, Siebers JV, Traneus E. Beam modeling and beam model commissioning for Monte Carlo dose calculation‐based radiation therapy treatment planning: Report of AAPM Task Group 157. Medical Physics 2019, 47: e1-e18. PMID: 31679157, DOI: 10.1002/mp.13898.Peer-Reviewed Original ResearchConceptsBeam modelElectron beam dose calculationsMonte Carlo methodRadiotherapy dose calculationsTreatment planning systemDose calculationsClinical beam modelCarlo methodBeam modelingRadiation therapy treatment planningMC simulationsTherapy treatment planningElectron beamTreatment headClinical photonRadiotherapy treatment planningGeneral approachCalculationsHigh accuracyPractical procedureAccuracyModelClinical physicistsAnalytical methodBeam delivery
2018
Monte Carlo dosimetry modeling of focused kV x‐ray radiotherapy of eye diseases with potential nanoparticle dose enhancement
Yan H, Ma X, Sun W, Mendez S, Stryker S, Starr‐Baier S, Delliturri G, Zhu D, Nath R, Chen Z, Roberts K, MacDonald CA, Liu W. Monte Carlo dosimetry modeling of focused kV x‐ray radiotherapy of eye diseases with potential nanoparticle dose enhancement. Medical Physics 2018, 45: 4720-4733. PMID: 30133705, DOI: 10.1002/mp.13144.Peer-Reviewed Original ResearchConceptsX-ray beamMC simulation programEye plaque treatmentCentral axis depth doseMC simulationsDose distributionBeam focusingEye Physics plaquesPhantom irradiationDose enhancementEnergy spectrumDepth doseLens modelingDosimetry modelingPhotoelectric absorptionKV rangeKV X-ray beamsBeamEBT3 filmSimulation programEnergy regimeModelingX-ray techniquesHalf maximumMore flexibility
2013
Feasibility of Using Distal Endpoints for In-Room PET Range Verification of Proton Therapy
Grogg K, Zhu X, Min C, Winey B, Bortfeld T, Paganetti H, Shih H, Fakhri G. Feasibility of Using Distal Endpoints for In-Room PET Range Verification of Proton Therapy. IEEE Transactions On Nuclear Science 2013, 60: 3290-3297. DOI: 10.1109/tns.2013.2278140.Peer-Reviewed Original ResearchPET distributionsNuclear reactionsProton therapyMC-PETSimulated positron emission tomographyIn-roomMonte CarloPET resolutionPositron emission tomographyRange verificationBiological washoutDose depthThreshold energyDose deliveryCross sectionPlanned doseMC simulationsIndividual beamsSimPETOne-dimensional profilesRadiological decayBeamDistal endpointsProtonNative nucleiFeasibility of using distal endpoints for In-room PET Range Verification of Proton Therapy
Grogg K, Zhu X, Min C, Winey B, Bortfeld T, Paganetti H, Shih H, El Fakhri G. Feasibility of using distal endpoints for In-room PET Range Verification of Proton Therapy. IEEE Transactions On Nuclear Science 2013, 60: 3890-3894. PMID: 24464031, PMCID: PMC3900284, DOI: 10.1109/nssmic.2012.6551892.Peer-Reviewed Original ResearchPET distributionsNuclear reactionsProton therapyMC-PETSimulated positron emission tomographyMonte CarloPET resolutionPositron emission tomographyRange verificationBiological washoutDose depthThreshold energyDose deliveryCross sectionPlanned doseMC simulationsIndividual beamsSimPETOne-dimensional profilesIn-roomRadiological decayBeamDistal endpointsProtonNative nuclei
2012
MO‐A‐213AB‐07: Evaluation of Distal Dose Surface with In‐Room PET for Proton Therapy Monitoring
Min C, Zhu X, Grogg K, Winey B, Fakhri G, Bortfeld T, Shih H, Paganetti H. MO‐A‐213AB‐07: Evaluation of Distal Dose Surface with In‐Room PET for Proton Therapy Monitoring. Medical Physics 2012, 39: 3860-3860. PMID: 28517508, DOI: 10.1118/1.4735759.Peer-Reviewed Original ResearchProton dose distributionsMeasured PET imagesDose surfaceDose distributionIn-roomMonte CarloProton therapy monitoringBeam's eye viewPET activitySimulated PET imagesPET imagingGantry roomsTreatment verificationTreatment headBeam deliveryClinical trialsProton therapyPassive scatteringMC simulationsBeam directionTreated volumeRoot-mean-square deviationBeamImage registrationSimulated PET
2007
Fast Monte Carlo based joint iterative reconstruction for simultaneous SPECT imaging
Ouyang J, Fakhri G, Moore S. Fast Monte Carlo based joint iterative reconstruction for simultaneous SPECT imaging. Medical Physics 2007, 34: 3263-3272. PMID: 17879789, DOI: 10.1118/1.2756601.Peer-Reviewed Original ResearchConceptsMC-JOSEMEnergy windowFast Monte CarloSignal-to-noise ratioScatter correction methodOrdered-subsets expectation-maximizationMonte CarloOrdered-subsets expectation-maximization algorithmIterative reconstruction algorithmPrimary photonsReconstruction algorithmPhoton transportSeptal penetrationDetector responseMC simulationsIterative reconstructionAttenuation distributionStandard OSEMPhotonsProjection dataPatient-specific activityDetectorReconstructed imagesScatteringEstimation of scattering
1999
A new correction method for cross-talk using artificial neural networks: validation in simultaneous technetium and iodine cerebral imaging
Fakhri G, Maksud P, Habert M, Todd-Pokropek A, Aurengo A. A new correction method for cross-talk using artificial neural networks: validation in simultaneous technetium and iodine cerebral imaging. 2011 IEEE Nuclear Science Symposium Conference Record 1999, 2: 1000-1004 vol.2. DOI: 10.1109/nssmic.1999.845830.Peer-Reviewed Original ResearchEnergy window methodMonte CarloHuman brain phantomI-123 imagingGeometric phantomsBrain phantomMC simulationsTc-99mCorrection methodDual-isotope studiesActivity distributionM imagesI-123PhantomAssessment of brain perfusionCross-talkRadionuclidesTc-99Cerebral imagingCorrectionBrain perfusionClinical potentialBackprojectionMonteCarlo
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply