2017
Charge Transport and Rectification in Donor–Acceptor Dyads
Hedström S, Matula A, Batista V. Charge Transport and Rectification in Donor–Acceptor Dyads. The Journal Of Physical Chemistry C 2017, 121: 19053-19062. DOI: 10.1021/acs.jpcc.7b05749.Peer-Reviewed Original ResearchFrontier orbitalsConjugated donor–acceptor systemA systemDensity functional theory levelDonor-acceptor dyadsDonor-acceptor systemsAppropriate transport propertiesGold electrodeA dyadsMolecular conformationTransport propertiesMolecular junctionsTheory levelRational designPhotovoltaic devicesCharge transportStructure-function relationshipsChemical compositionLarge rectification ratioOrbitalsFundamental physical insightsMolecular levelRectification propertiesRectification ratioFermi levelElectrode-Ligand Interactions Dramatically Enhance CO2 Conversion to CO by the [Ni(cyclam)](PF6)2 Catalyst
Wu Y, Rudshteyn B, Zhanaidarova A, Froehlich J, Ding W, Kubiak C, Batista V. Electrode-Ligand Interactions Dramatically Enhance CO2 Conversion to CO by the [Ni(cyclam)](PF6)2 Catalyst. ACS Catalysis 2017, 7: 5282-5288. DOI: 10.1021/acscatal.7b01109.Peer-Reviewed Original ResearchCO2 conversionTransition metal complexesElectrochemical CO2 conversionDesign of ligandsEnhanced reaction kineticsCell operating conditionsCyclam ligandGold electrodeElectrocatalytic performanceHg surfaceDispersive interactionsReaction kineticsMetallic surfacesCatalystDramatic enhancementLigandsCOConversionSurfaceElectrodeComplexesInteractionKineticsOperating conditions
2016
Electrochemical detection of DNA 3′-phosphatases based on surface-extended DNA nanotail strategy
Wu D, Li C, Hu X, Mao X, Li G. Electrochemical detection of DNA 3′-phosphatases based on surface-extended DNA nanotail strategy. Analytica Chimica Acta 2016, 924: 29-34. PMID: 27181641, DOI: 10.1016/j.aca.2016.04.013.Peer-Reviewed Original ResearchConceptsDNA 3'-phosphataseT4 polynucleotide kinase phosphatasePolynucleotide kinase phosphataseLow detection limitLong DNA strandsSubstrate DNACellular processesTerminal deoxynucleotidyl transferaseDNA probesDNA strandsGold electrodeDephosphorylation reactionsTerminal hydroxylElectrochemical detectionUltrasensitive detectionDetection limitDNAAnalytical performanceDeoxynucleotidyl transferaseSignal amplificationDrug discoveryDephosphorylationClinical diagnosticsSignal enhancementTdT
1995
Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules.
Nassar A, Willis W, Rusling J. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. Analytical Chemistry 1995, 67: 2386-92. PMID: 8686876, DOI: 10.1021/ac00110a010.Peer-Reviewed Original ResearchConceptsRate of electron transferElectron transferTin-doped In2O3Films of didodecyldimethylammonium bromideDidodecyldimethylammonium bromidePyrolytic graphiteX-ray photoelectron spectroscopyDirect electron transferElectrode-film interfaceTin-doped indium oxideBlock electron transferPG electrodeBare electrodeGold electrodeOrdered filmsPhotoelectron spectroscopyMB solutionX-rayIndium oxideAdsorption of macromoleculesElectrodeAdsorption of surfactantsAdsorbed biomacromoleculesIn2O3Films
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply