2025
Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence
Liblova Z, Maurencova D, Salovska B, Kratky M, Mracek T, Korandova Z, Pecinova A, Vasicova P, Rysanek D, Andera L, Fabrik I, Kupcik R, Kashmel P, Sultana P, Tambor V, Bartek J, Novak J, Vajrychova M, Hodny Z. Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence. Molecular Oncology 2025 PMID: 40288905, DOI: 10.1002/1878-0261.70039.Peer-Reviewed Original ResearchANT isoformsOxidative phosphorylationCellular senescenceProtein isoform levelsGlioblastoma cellsProtein levelsCellular energy stateADP/ATP translocaseCellular oxygen consumption rateBioinformatics analysisIsoform levelsIsoform ratioDevelopment of senescenceGlioblastoma tumorigenesisOxygen consumption rateIsoformsPoor prognosis of glioblastomaANT2Targeted Mass SpectrometrySenescencePhosphorylationRT-PCRAntsPrognosis of glioblastomaAggressive brain tumor
2024
PRMT6 facilitates EZH2 protein stability by inhibiting TRAF6-mediated ubiquitination degradation to promote glioblastoma cell invasion and migration
Wang J, Shen S, You J, Wang Z, Li Y, Chen Y, Tuo Y, Chen D, Yu H, Zhang J, Wang F, Pang X, Xiao Z, Lan Q, Wang Y. PRMT6 facilitates EZH2 protein stability by inhibiting TRAF6-mediated ubiquitination degradation to promote glioblastoma cell invasion and migration. Cell Death & Disease 2024, 15: 524. PMID: 39043634, PMCID: PMC11266590, DOI: 10.1038/s41419-024-06920-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain NeoplasmsCell Line, TumorCell MovementEnhancer of Zeste Homolog 2 ProteinFemaleGene Expression Regulation, NeoplasticGlioblastomaHumansMaleMiceMice, Inbred BALB CMice, NudeNeoplasm InvasivenessNuclear ProteinsProtein StabilityProtein-Arginine N-MethyltransferasesProteolysisTNF Receptor-Associated Factor 6UbiquitinationConceptsProtein arginine methyltransferase 6Glioblastoma cell invasionStability of EZH2Protein stabilityCell invasionOverexpression of PRMT6Inhibited glioblastoma cell invasionGlioblastoma cellsEZH2 protein stabilityHistone methylation marksMigration of glioblastoma cellsHallmarks of cancerProliferation of glioblastoma cellsMethylation marksTumor cell invasionEpigenetic regulationGlioblastoma cells in vivoBioinformatics analysisMigration in vitroRegulatory relationshipsEZH2 proteinUbiquitination degradationProteinCells in vivoTRAF6
2021
Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
Schiapparelli P, Pirman NL, Mohler K, Miranda-Herrera PA, Zarco N, Kilic O, Miller C, Shah SR, Rogulina S, Hungerford W, Abriola L, Hoyer D, Turk BE, Guerrero-Cázares H, Isaacs FJ, Quiñones-Hinojosa A, Levchenko A, Rinehart J. Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function. Cell Reports 2021, 36: 109416. PMID: 34289367, PMCID: PMC8379681, DOI: 10.1016/j.celrep.2021.109416.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCell Line, TumorCell MovementCell ProliferationEscherichia coliFemaleGlioblastomaHEK293 CellsHumansMaleMice, NudeMiddle AgedPhosphorylationPhosphoserineProtein Serine-Threonine KinasesRecombinant ProteinsSignal TransductionSmall Molecule LibrariesSubstrate SpecificityWNK Lysine-Deficient Protein Kinase 1ConceptsKinase networkAuthentic post-translational modificationsGenetic code expansionPost-translational modificationsProduction of proteinsSmall molecule kinase inhibitorsKinase inhibitorsGenetic codePhosphorylated proteinsCode expansionKinase proteinWNK kinasesPhysiological functionsWNK4 kinaseBiochemical propertiesGlioblastoma cellsKinaseBacterial strainsProteinDistinct sitesPhosphoserineSPAKBacteriaCellular systemsCells
2020
Inhibition of MUC1 exerts cell-cycle arrest and telomerase suppression in glioblastoma cells
Kim S, Seo Y, Chowdhury T, Yu H, Lee C, Kim K, Kang H, Kim H, Park S, Kim K, Park C. Inhibition of MUC1 exerts cell-cycle arrest and telomerase suppression in glioblastoma cells. Scientific Reports 2020, 10: 18238. PMID: 33106534, PMCID: PMC7589558, DOI: 10.1038/s41598-020-75457-z.Peer-Reviewed Original ResearchConceptsRole of MUC1Epithelial-mesenchymal transitionMucin 1Cell cycle arrestMUC1 knockdownNormal brain tissueExpression levelsGrowth factor betaTERT expression levelsGBM cell linesOverall survivalTherapeutic targetOncological processHuman gliomasBrain tissueFactor betaMesenchymal transitionPhosphorylation of RB1Diverse cancersGlioblastomaTelomere maintenance mechanismAnticancer mechanismCell proliferationCycle arrestGlioblastoma cellsA DNA Repair Inhibitor Isolated from an Ecuadorian Fungal Endophyte Exhibits Synthetic Lethality in PTEN-Deficient Glioblastoma
Adaku N, Park HB, Spakowicz DJ, Tiwari MK, Strobel SA, Crawford JM, Rogers FA. A DNA Repair Inhibitor Isolated from an Ecuadorian Fungal Endophyte Exhibits Synthetic Lethality in PTEN-Deficient Glioblastoma. Journal Of Natural Products 2020, 83: 1899-1908. PMID: 32407116, DOI: 10.1021/acs.jnatprod.0c00012.Peer-Reviewed Original ResearchConceptsPTEN-deficient glioblastoma cellsPTEN-deficient cancersTumor suppressor PTENImportant molecular toolPTEN-deficient glioblastomaInhibitor of DNAHuman cancer developmentDNA repair inhibitorsFungal endophytesBreak repairGenomic levelSuppressor PTENMolecular toolsEndophytic fungiSynthetic lethalityPTEN deficiencyGlioblastoma cellsRepair inhibitorsCancer developmentPTEN lossCurrent cancer treatmentsLarger patient populationTherapeutic leadsMedicinal plantsNew therapeutic leads
2019
Organ‐on‐a‐Chip: Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature‐on‐a‐Chip System Correlates with Tumor Heterogeneity and Subtypes (Adv. Sci. 8/2019)
Xiao Y, Kim D, Dura B, Zhang K, Yan R, Li H, Han E, Ip J, Zou P, Liu J, Chen A, Vortmeyer A, Zhou J, Fan R. Organ‐on‐a‐Chip: Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature‐on‐a‐Chip System Correlates with Tumor Heterogeneity and Subtypes (Adv. Sci. 8/2019). Advanced Science 2019, 6: 1970046. PMCID: PMC6468959, DOI: 10.1002/advs.201970046.Peer-Reviewed Original Research
2014
A Functional Screen Identifies miRs That Induce Radioresistance in Glioblastomas
Moskwa P, Zinn PO, Choi YE, Shukla SA, Fendler W, Chen CC, Lu J, Golub TR, Hjelmeland A, Chowdhury D. A Functional Screen Identifies miRs That Induce Radioresistance in Glioblastomas. Molecular Cancer Research 2014, 12: 1767-1778. PMID: 25256711, PMCID: PMC4386891, DOI: 10.1158/1541-7786.mcr-14-0268.Peer-Reviewed Original ResearchConceptsCell cycle checkpoint responsesFunctional screen identifiesTGFβ receptor inhibitorUnbiased functional screenCheckpoint responseScreen identifiesCancer Genome AtlasFunctional screenGlioblastoma patient specimensMolecular networksGlioblastoma datasetGlioblastoma cellsGenome AtlasSystematic identificationGlioblastoma radioresistanceTherapeutic resistanceMiR125aRadioresistanceTGFβNew roleTGFβ inhibitorsTherapeutic applicationsGlioblastomaMIR1MiR150
2013
MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells
Rani S, Rathod S, Karthik S, Kaur N, Muzumdar D, Shiras A. MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro-Oncology 2013, 15: 1302-1316. PMID: 23814265, PMCID: PMC3779040, DOI: 10.1093/neuonc/not090.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBlotting, WesternBrain NeoplasmsCalmodulin-Binding ProteinsCell AdhesionCell CycleCell MovementCell ProliferationGliomaHumansMiceMice, Inbred NODMice, SCIDMicroRNAsNeoplastic Stem CellsReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSOX9 Transcription FactorConceptsAdducin 3MiR-145Overexpression of moleculesCell proliferationGlioma cellsHNGC-2 cellsModel cell systemMiR-145 promoterTumor suppressive functionMiR-145 functionsGuanine (CpG) islandsMiR-145 overexpressionEctopic expressionGrowth-suppressive effectsMiR-145 lossHuman glioma cellsCell adhesionC-MycFunctional studiesN-cadherinGlioma cell linesGlioblastoma cellsN-mycSOX9E-cadherinSecretome analysis of Glioblastoma cell line - HNGC-2
Gupta M, Polisetty R, Ramamoorthy K, Tiwary S, Kaur N, Uppin M, Shiras A, Sirdeshmukh R. Secretome analysis of Glioblastoma cell line - HNGC-2. Molecular Omics 2013, 9: 1390-1400. PMID: 23483059, DOI: 10.1039/c3mb25383j.Peer-Reviewed Original ResearchConceptsHNGC-2 cellsProtein identificationActin cytoskeleton signalingClassical secretory pathwayPhosphatidyl inositol 3 kinaseCell linesESI-IT mass spectrometerCytoskeleton signalingTransmembrane domainSecretory pathwayDNA recombinationSignal sequenceCellular assemblyPlasma membraneNon-redundant listLC-MS/MS analysisSecretome analysisExtracellular localizationGlioblastoma cellsSDS gelsGlioblastoma multiformeProteinImportant functional groupsSecretomeKinase
2010
A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry
Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, Marie Y, Mokhtari K, Thomas JL, Eichmann A, Delattre JY, Maniotis AJ, Sanson M. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 2010, 133: 973-982. PMID: 20375132, PMCID: PMC4861203, DOI: 10.1093/brain/awq044.Peer-Reviewed Original ResearchConceptsStem-like cellsGlioblastoma stem-like cellsVascular smooth muscle-like cellsSmooth muscle-like cellsAnti-angiogenic therapyMuscle-like cellsHuman glioblastoma tissuesTransient efficacyTreatment strategiesStem cell propertiesEndothelial proliferationVasculogenic mimicryTumor cellsHuman tumorsBlood vesselsGlioblastoma vasculatureGlioblastoma tissuesGlioblastoma cellsVascularizationCellsDe novoGene expressionNew alternative mechanismTherapyTumors
1996
Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy
Piepmeier J, Pedersen P, Yoshida D, Greer C. Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy. Annals Of Surgical Oncology 1996, 3: 543-549. PMID: 8915486, DOI: 10.1007/bf02306087.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Agents, AlkylatingBrain NeoplasmsCarrier ProteinsCell LineColony-Forming Units AssayEstramustineFlow CytometryGlioblastomaHumansImmunohistochemistryMiceMice, NudeMicrotubule-Associated ProteinsNeoplasm TransplantationRadiation-Sensitizing AgentsThymidineTransplantation, HeterologousTumor Cells, CulturedConceptsSubcutaneous xenograftsGlioblastoma cellsHuman glioblastoma cellsMicrotubule-associated proteinsHuman glioblastomaPotent antimitotic effectsUse of estramustineAntimicrotubule agentsEstramustine-binding proteinPreclinical dataEstramustineNeoplastic cellsAntiproliferative effectsSelective therapyGlioma cellsAntimitotic effectCytotoxic effectsGlioblastomaUseful targetTherapyXenograftsLaboratory investigationsSelective effectAntimitotic activityCellsIn vitro inhibition of cell proliferation, viability, and invasiveness in U87MG human glioblastoma cells by estramustine phosphate.
Yoshida D, Piepmeier J, Teramoto A. In vitro inhibition of cell proliferation, viability, and invasiveness in U87MG human glioblastoma cells by estramustine phosphate. Neurosurgery 1996, 39: 360-6. PMID: 8832674, DOI: 10.1097/00006123-199608000-00025.Peer-Reviewed Original ResearchConceptsEstramustine phosphateMumol/LGlioblastoma cell linesCell proliferationRelative survival ratesTreatment of glioblastomaCell linesTime-dependent depressionAnti-invasive abilityDevelopment of agentsHuman glioblastoma cell linesU87MG human glioblastoma cellsHuman glioblastoma cellsSurvival rateTumor proliferationDrug concentrationsMonotetrazolium assayAntiproliferative capacityCell invasivenessGlioblastoma cellsNon-DNA targetsBasement membraneInvasion indexInvasive potentialSelective antiproliferative activity
1994
Selective antimitotic effects of estramustine correlate with its antimicrotubule properties on glioblastoma and astrocytes.
Yoshida D, Cornell-Bell A, Piepmeier J. Selective antimitotic effects of estramustine correlate with its antimicrotubule properties on glioblastoma and astrocytes. Neurosurgery 1994, 34: 863-7; discussion 867-8. PMID: 8052384, DOI: 10.1227/00006123-199405000-00012.Peer-Reviewed Original ResearchConceptsAntimitotic effectHuman glioblastoma cellsGlioma cellsGlioblastoma cellsEstramustine binding proteinModest antiproliferative effectsConcentration-dependent cytotoxic effectConcentration-dependent inhibitionEstramustine treatmentImmunohistochemical analysisAstrocyte viabilityEstramustineAstrocyte culturesAntiproliferative effectsMonoclonal antibodiesAstrocytesHuman glioblastomaTumor culturesCytotoxic effectsDimethylthiazol-2Diphenyltetrazolium bromideAntimicrotubule activityDeoxyribonucleic acid synthesisEstramustine sensitizes human glioblastoma cells to irradiation.
Yoshida D, Piepmeier J, Weinstein M. Estramustine sensitizes human glioblastoma cells to irradiation. Cancer Research 1994, 54: 1415-7. PMID: 8137240.Peer-Reviewed Original ResearchConceptsMicroM estramustineRadiation enhancerGlioma cellsEffect of estramustineGlioblastoma cellsG2M cellsConcentration-dependent inhibitionMalignant glioma cellsHuman glioma cellsMinimal systemic toxicityEstramustineHuman glioblastoma cellsPotentiation factorSystemic toxicityG2M fractionFlow cytometryClonogenic survivalAntimicrotubule agentsCytotoxic effectsControl cellsH treatmentDaily scheduleCellsCell cycleRadiation sensitivity
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply