2023
The Properties and Domain Requirements for Phase Separation of the Sup35 Prion Protein In Vivo
Grimes B, Jacob W, Liberman A, Kim N, Zhao X, Masison D, Greene L. The Properties and Domain Requirements for Phase Separation of the Sup35 Prion Protein In Vivo. Biomolecules 2023, 13: 1370. PMID: 37759770, PMCID: PMC10526957, DOI: 10.3390/biom13091370.Peer-Reviewed Original Research
2021
Droplet microfluidic generation of a million optical microparticle barcodes.
Dannenberg P, Wang J, Zhuo Y, Cho S, Kim K, Yun S. Droplet microfluidic generation of a million optical microparticle barcodes. Optics Express 2021, 29: 38109-38118. PMID: 34808870, PMCID: PMC8687102, DOI: 10.1364/oe.439143.Peer-Reviewed Original Research
2020
Novel Use of Vitamin B2 as a Fluorescent Tracer in Aerosol and Droplet Contamination Models in Otolaryngology
Sim ES, Dharmarajan H, Boorgu DSSK, Goyal L, Weinstock M, Whelan R, Freiser ME, Corcoran TE, Jabbour N, Wang E, H. D. Novel Use of Vitamin B2 as a Fluorescent Tracer in Aerosol and Droplet Contamination Models in Otolaryngology. Annals Of Otology Rhinology & Laryngology 2020, 130: 280-285. PMID: 32795090, PMCID: PMC7429918, DOI: 10.1177/0003489420949588.Peer-Reviewed Original ResearchConceptsSmall dropletsEndonasal drillingParticle dispersion patternsNasal cavityVitamin B2Cadaveric headsFluorescent tracersDifferent fluorescent tracersAverage aerodynamic diameterCollection chamberUV lightDropletsNasopharyngeal mucosaSafety profileCascade impactorOtolaryngology proceduresContamination modelDrillingGreen dyeCOVID-19 eraHuman subjects
2015
Chapter 15 Radiative Heat Transfer in Droplets
Brutin D, Carle F, Rigollet F. Chapter 15 Radiative Heat Transfer in Droplets. 2015, 193-199. DOI: 10.1016/b978-0-12-800722-8.00015-1.Peer-Reviewed Original ResearchChapter 9 Convection
Carle F, Brutin D. Chapter 9 Convection. 2015, 115-128. DOI: 10.1016/b978-0-12-800722-8.00009-6.Peer-Reviewed Original ResearchChapter 25 Gravity
Brutin D, Carle F. Chapter 25 Gravity. 2015, 383-393. DOI: 10.1016/b978-0-12-800722-8.00025-4.Peer-Reviewed Original Research
2013
How Surface Functional Groups Influence Fracturation in Nanofluid Droplet Dry-Outs
Carle F, Brutin D. How Surface Functional Groups Influence Fracturation in Nanofluid Droplet Dry-Outs. Langmuir 2013, 29: 9962-9966. PMID: 23902151, DOI: 10.1021/la401428v.Peer-Reviewed Original ResearchConceptsSubstrate surface energySurface functional groupsSurface energyCrack patternsCrack formationCrack shapeNanofluid dropletsNanoparticle diameterFunctional groupsSolvent evaporationKey parametersParticle interactionsPolystyrene nanoparticle surfacesNanofluidsNanoparticle surfaceEnergyHeight ratioParametersShapeDropletsEvaporationCompactionSurfaceMaterialsExperimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation
Carle F, Sobac B, Brutin D. Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation. Applied Physics Letters 2013, 102: 061603. DOI: 10.1063/1.4792058.Peer-Reviewed Original ResearchNatural convectionDiffusion-controlled evaporation modelNatural convective transportConvective transportGrashof numberDroplet evaporationSessile dropletsSubstrate temperatureGravity levelEvaporation rateVapor fieldEvaporation modelVapor phaseExperimental dataTransport contributionExperimental resultsConvectionEmpirical modelEvaporationDropletsTransport
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply