2020
Accelerating MRI Reconstruction on TPUs
Lu T, Marin T, Zhuo Y, Chen Y, Ma C. Accelerating MRI Reconstruction on TPUs. 2020, 00: 1-9. DOI: 10.1109/hpec43674.2020.9286192.Peer-Reviewed Original ResearchTensor Processing UnitK-space dataData decompositionMeasured k-space dataImage reconstructionAccelerated MRI reconstructionGoogle’s Tensor Processing UnitMR image reconstructionScientific computing problemsAlternating Direction MethodMachine learning applicationsReconstruction methodImage reconstruction methodDiscrete Fourier transformSparsifying transformCompressive sensingFourier transform operationSparsity constraintMRI reconstructionLearning applicationsCommunication timeNetwork topologyProcessing unitMatrix multiplicationComputational problems
2018
The discrete sign problem: Uniqueness, recovery algorithms and phase retrieval applications
Leshem B, Raz O, Jaffe A, Nadler B. The discrete sign problem: Uniqueness, recovery algorithms and phase retrieval applications. Applied And Computational Harmonic Analysis 2018, 45: 463-485. DOI: 10.1016/j.acha.2016.12.003.Peer-Reviewed Original ResearchRetrieval applicationsRecovery algorithmRetrieval problemPhase retrieval problemDimensional vectorHigh sampling rateAlgorithmDiscrete Fourier transformNoise-free caseMeasurement vectorPhase retrievalSpecific instancesSampling rateMultiple solutionsRetrievalApplicationsObjectsSign patternSpecial caseVectorSolutionInstancesPhase problem
2008
A Framework for Discrete Integral Transformations IThe Pseudopolar Fourier Transform
Averbuch A, Coifman R, Donoho D, Israeli M, Shkolnisky Y. A Framework for Discrete Integral Transformations IThe Pseudopolar Fourier Transform. SIAM Journal On Scientific Computing 2008, 30: 764-784. DOI: 10.1137/060650283.Peer-Reviewed Original ResearchSame complexity orderDirect inversion algorithmFrequency gridGram operatorOne-dimensional operationsDiscrete gridDiscrete caseFrequency domain structureComplexity orderContinuous functionsIterative algorithmExact analogueFast algorithmPolar coordinatesInversion algorithmPseudopolar gridApproximate interpolationAnalogous toolsContinuum phenomenaRadial densityPseudopolar Fourier transformDifferent raysAlgorithmGridDiscrete Fourier transform
2002
Control Analysis for Autonomously Oscillating Biochemical Networks
Reijenga K, Westerhoff H, Kholodenko B, Snoep J. Control Analysis for Autonomously Oscillating Biochemical Networks. Biophysical Journal 2002, 82: 99-108. PMID: 11751299, PMCID: PMC1302452, DOI: 10.1016/s0006-3495(02)75377-0.Peer-Reviewed Original ResearchConceptsSummation theoremYeast glycolytic oscillationsLimit cycle oscillationsDynamic systemsControl coefficientsBiochemical networksCycle oscillationsOscillatory propertiesControl analysisMetabolic control analysisTheoremGlycolytic oscillationsTime domainOscillationsModel outputDiscrete Fourier transformFrequency domainSteady stateData setsQualitative way
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply