2017
AP2 α modulates cystic fibrosis transmembrane conductance regulator function in the human intestine
Kumari V, Desai S, Ameen NA. AP2 α modulates cystic fibrosis transmembrane conductance regulator function in the human intestine. Journal Of Cystic Fibrosis 2017, 16: 327-334. PMID: 28438500, PMCID: PMC5502754, DOI: 10.1016/j.jcf.2017.03.012.Peer-Reviewed Original ResearchConceptsT84 cellsIntestinal T84 cellsCystic fibrosis transmembrane conductance regulator (CFTR) functionCFTR short-circuit currentPhysiologic significanceC2BBe cellsHuman intestineCaco2BBE cellsIntestineFunctional CFTRCFTR functionCellsCFTR
1995
CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP
Schwiebert E, Egan M, Hwang T, Fulmer S, Allen S, Cutting G, Guggino W. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 1995, 81: 1063-1073. PMID: 7541313, DOI: 10.1016/s0092-8674(05)80011-x.Peer-Reviewed Original ResearchConceptsUnknown regulatory mechanismCystic fibrosis transmembrane conductance regulator (CFTR) functionRegulatory mechanismsConductance regulatorCl- secretory pathwaySignaling mechanismShort-circuit current recordingsRegulator functionCFTR functionChloride channelsCellular mechanismsSingle-channel patch-clamp recordingsCFTRCl- channelsEpithelial cellsATPAutocrine mechanismCurrent recordingsORCCPathwayCF airwaysPatch-clamp recordingsCellsMechanismRegulator
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply