2025
Modeling SMAD2 Mutations in Induced Pluripotent Stem Cells Provides Insights Into Cardiovascular Disease Pathogenesis
Ward T, Morton S, Venturini G, Tai W, Jang M, Gorham J, Delaughter D, Wasson L, Khazal Z, Homsy J, Gelb B, Chung W, Bruneau B, Brueckner M, Tristani-Firouzi M, DePalma S, Seidman C, Seidman J. Modeling SMAD2 Mutations in Induced Pluripotent Stem Cells Provides Insights Into Cardiovascular Disease Pathogenesis. Journal Of The American Heart Association 2025, 14: e036860. PMID: 40028843, PMCID: PMC12184555, DOI: 10.1161/jaha.124.036860.Peer-Reviewed Original ResearchConceptsLoss-of-functionCongenital heart diseaseChromatin accessibilityMissense variantsCHD probandsPluripotent stem cellsHomozygous loss-of-functionCHD-associated genesHeterozygous loss-of-functionTranscription factor bindingMutant induced pluripotent stem cellsChromatin immunoprecipitation dataChromatin peaksStem cellsChromatin interactionsInduced pluripotent stem cellsFactor bindingTranscription factor NanogExome sequencingImmunoprecipitation dataTranscription factorsRNA sequencingChromatinMissenseMolecular consequences
2014
An Optimized Protocol for Isolating Primary Epithelial Cell Chromatin for ChIP
Browne JA, Harris A, Leir SH. An Optimized Protocol for Isolating Primary Epithelial Cell Chromatin for ChIP. PLOS ONE 2014, 9: e100099. PMID: 24971909, PMCID: PMC4074041, DOI: 10.1371/journal.pone.0100099.Peer-Reviewed Original ResearchConceptsCell typesChromatin immunoprecipitation dataDNA-binding proteinsLysis bufferPrimary human epithelial cellsEpithelial cell typesEpithelial cellsChromatin purificationHuman bronchial epithelial cellsENCODE consortiumHuman epithelial cellsCell chromatinNext-generation sequencingImmunoprecipitation dataCell lysis procedurePrimary human bronchial epithelial cellsChromatinFormaldehyde-fixed cellsBronchial epithelial cellsMembrane lysisSize selectionLysis procedureAdherent cellsCellsLysis step
2009
Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data
Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data. PLOS ONE 2009, 4: e5279. PMID: 19390574, PMCID: PMC2668758, DOI: 10.1371/journal.pone.0005279.Peer-Reviewed Original ResearchConceptsProtein coding genesMiRNA genesCoding genesIntragenic miRNAsPol II chromatin immunoprecipitationNon-coding RNA regulatorsRNA polymerase II promoterChromatin immunoprecipitation dataDiverse biological processesOwn unique promoterPolymerase II promoterTranscription start siteIntergenic miRNAsTranscription regulationMiRNA promotersRNA regulatorsChromatin immunoprecipitationPromoter organizationHost genesPrimary transcriptTranscript organizationStart siteImmunoprecipitation dataUnique promoterBiological processesPeakSeq enables systematic scoring of ChIP-seq experiments relative to controls
Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nature Biotechnology 2009, 27: 66-75. PMID: 19122651, PMCID: PMC2924752, DOI: 10.1038/nbt.1518.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply