2023
TIF1γ Counteracts Ferroptosis to Drive Erythroid Progenitor Differentiation
Rossmann M, Yang S, Abraham B, Wang Y, Young R, Hekimi S, Zon L. TIF1γ Counteracts Ferroptosis to Drive Erythroid Progenitor Differentiation. Blood 2023, 142: 8. DOI: 10.1182/blood-2023-184853.Peer-Reviewed Original ResearchTranscription elongationErythroid differentiationErythroid lineageNucleotide metabolismHematopoietic stem cell differentiationCell fate decisionsGenome-wide expressionChromatin immunoprecipitation analysisOnset of hematopoiesisTranscription regulatory processesErythroid progenitor differentiationStem cell differentiationElectron transport chainInhibitor of ferroptosisTranscriptional intermediary factor 1 gammaEnzyme dihydroorotate dehydrogenaseChromatin factorsSuppressor screenMutant embryosFate decisionsTranscriptome profilingZebrafish embryosProgenitor differentiationLineage differentiationBlood differentiation
2022
Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo
Greuter T, Yaqoob U, Gan C, Jalan-Sakrikar N, Kostallari E, Lu J, Gao J, Sun L, Liu M, Sehrawat TS, Ibrahim SH, Furuta K, Nozickova K, Huang BQ, Gao B, Simons M, Cao S, Shah VH. Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo. Journal Of Hepatology 2022, 77: 723-734. PMID: 35421427, PMCID: PMC9391258, DOI: 10.1016/j.jhep.2022.03.029.Peer-Reviewed Original ResearchConceptsFocal adhesionsGlycolytic enzymesIsolated focal adhesionsChromosome conformation captureHistone activation marksChromatin immunoprecipitation analysisConformation captureChIP sequencingActivation marksEpigenetic regulationActin dynamicsHistone acetylationRNA sequencingERT2 miceActin polymerizationEndothelial cellsCXCL1 promoterNovel roleIntegrin β1Druggable targetsInhibition of glycolysisNuclear chromatinGlycolysisAngiocrineEnzyme
2014
Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex
Park H, Yu H, Park S, Ahn Y, Kim Y, Kim H. Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex. The International Journal Of Neuropsychopharmacology 2014, 17: 1487-1500. PMID: 24606669, DOI: 10.1017/s1461145714000248.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnalysis of VarianceAnimalsButyric AcidChromatin ImmunoprecipitationDisease Models, AnimalElectroshockFrontal LobeGene Expression RegulationGlial Fibrillary Acidic ProteinHistamine AntagonistsHistone Deacetylase 2MalePhosphopyruvate HydrataseRatsRats, Sprague-DawleyReceptors, N-Methyl-D-AspartateRNA, MessengerSeizuresSignal TransductionConceptsSignaling-related genesHistone deacetylasesHistone modificationsHistone acetylationCalcium/calmodulin-dependent protein kinase II alphaChromatin immunoprecipitation analysisRat frontal cortexEarly growth response 1Transcriptional repressionReceptor-related genesHistone deacetylationH4 proteinN-methyl-D-aspartate 2ATarget genesFrontal cortexImmunoprecipitation analysisElectroconvulsive seizuresGene expressionResponse 1GenesHDAC2 expressionNeuronal cellsECS treatmentClass I HDACsII alpha
2011
Myc-Mediated Lymphomagenesis Is Driven by DNA Methylation Changes Induced by DNMT3B7 Expression and Dnmt3b Heterozygosity
Vasanthakumar A, Lepore J, Zegarek M, Kocherginsky M, Singh M, Godley L. Myc-Mediated Lymphomagenesis Is Driven by DNA Methylation Changes Induced by DNMT3B7 Expression and Dnmt3b Heterozygosity. Blood 2011, 118: 225. DOI: 10.1182/blood.v118.21.225.225.Peer-Reviewed Original ResearchEμ-myc miceDNA methylationGlobal DNA hypermethylationDNA hypermethylationMyc bindsDNA methyltransferasesE-boxDNA methyltransferasePromoter regionCancer cellsDnmt3a/bDNA methylation patternsChromatin immunoprecipitation analysisDNA methylation changesTranscription start siteCo-immunoprecipitation studiesAbnormal DNA methylationBinding of MYCGlobal DNA methylationTransformation of cellsDominant negative isoformNon-transformed cellsDNMT3B isoformsPremature stop codonEukaryotic cells
2010
Feedback regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2 gene expression by Sirt1 and FoxO1
Wei D, Tao R, Zhang Y, White M, Dong X. Feedback regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2 gene expression by Sirt1 and FoxO1. AJP Endocrinology And Metabolism 2010, 300: e312-e320. PMID: 21081708, PMCID: PMC3043623, DOI: 10.1152/ajpendo.00524.2010.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedChromatin ImmunoprecipitationDNAFeedback, PhysiologicalForkhead Box Protein O1Forkhead Transcription FactorsGluconeogenesisHepatocytesInsulin Receptor Substrate ProteinsLiverMiceMice, KnockoutPyruvic AcidReceptors, Cytoplasmic and NuclearReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSirtuin 1TransfectionConceptsGene expressionForkhead transcription factor FOXO1PDK4 gene expressionWild-type backgroundChromatin immunoprecipitation analysisProtein deacetylase SIRT1Transcription factor FOXO1Orphan nuclear receptorHepatic gluconeogenesisCatalytic domainDNA sequencesSmall heterodimer partnerImmunoprecipitation analysisInactivation of SIRT1Physiological processesDeacetylase SIRT1Luciferase reporterInsulin receptorFeedback regulationNuclear receptorsFOXO1Heterodimer partnerGenesHepatic insulin receptorSystemic glucose tolerance
2008
Failure of Terminal Erythroid Differentiation in EKLF-Deficient Mice Is Associated with Cell Cycle Perturbation and Reduced Expression of E2F2
Pilon AM, Arcasoy MO, Dressman HK, Vayda SE, Maksimova YD, Sangerman JI, Gallagher PG, Bodine DM. Failure of Terminal Erythroid Differentiation in EKLF-Deficient Mice Is Associated with Cell Cycle Perturbation and Reduced Expression of E2F2. Molecular And Cellular Biology 2008, 28: 7394-7401. PMID: 18852285, PMCID: PMC2593440, DOI: 10.1128/mcb.01087-08.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CycleCell DifferentiationE2F2 Transcription FactorEmbryo, MammalianErythropoiesisGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Regulatory NetworksKruppel-Like Transcription FactorsLiverMiceMice, KnockoutOligonucleotide Array Sequence AnalysisPromoter Regions, GeneticStem CellsTranscription, GeneticConceptsErythroid Krüppel-like factorTerminal erythroid differentiationEarly erythroid progenitor cellsErythroid progenitor cellsErythroid differentiationChromatin modifiersProgenitor cellsKrüppel-like transcription factorsNetwork of genesCell cycle regulationChromatin immunoprecipitation analysisKrüppel-like factorCell cycle progressionFailure of erythropoiesisS phase transitionEarly progenitor cellsTranscriptional activatorCycle regulationTranscriptional profilingTranscription factorsTarget genesImmunoprecipitation analysisDNase IErythroid cellsCycle progression
2007
Receptor Activator of Nuclear Factor-κB Ligand-Induced Nuclear Factor of Activated T Cells (C1) Autoregulates Its Own Expression in Osteoclasts and Mediates the Up-Regulation of Tartrate-Resistant Acid Phosphatase
Fretz JA, Shevde NK, Singh S, Darnay BG, Pike JW. Receptor Activator of Nuclear Factor-κB Ligand-Induced Nuclear Factor of Activated T Cells (C1) Autoregulates Its Own Expression in Osteoclasts and Mediates the Up-Regulation of Tartrate-Resistant Acid Phosphatase. Endocrinology 2007, 22: 737-750. PMID: 18063694, PMCID: PMC2262172, DOI: 10.1210/me.2007-0333.Peer-Reviewed Original ResearchMeSH KeywordsAcid PhosphataseAnimalsBlotting, WesternBone and BonesCell LineChromatin ImmunoprecipitationHomeostasisIsoenzymesMiceMice, Inbred C57BLNFATC Transcription FactorsOsteoclastsPromoter Regions, GeneticRANK LigandReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTartrate-Resistant Acid PhosphataseTranscription, GeneticUp-RegulationConceptsNFAT membersRNA polymerase IIDNA-binding proteinsSpecific transcription factorsChromatin immunoprecipitation analysisSignal transduction pathwaysAdditional molecular detailsNuclear factorActivated T cells cytoplasmic 1Polymerase IIAcp5 promotersTranscription factorsTransduction pathwaysMolecular detailsTarget genesOwn expressionImmunoprecipitation analysisP1 promoterBone-resorbing cellsReceptor activatorHematopoietic precursorsGenesNuclear factor-κB ligandCytoplasmic 1Time-dependent accumulation
2006
Basal repression of BRCA1 by multiple E2Fs and pocket proteins at adjacent E2F sites
Bindra RS, Glazer PM. Basal repression of BRCA1 by multiple E2Fs and pocket proteins at adjacent E2F sites. Cancer Biology & Therapy 2006, 5: 1400-1407. PMID: 17106239, DOI: 10.4161/cbt.5.10.3454.Peer-Reviewed Original ResearchConceptsAdjacent E2F sitesE2F siteP107 complexesPocket proteinsQuantitative chromatin immunoprecipitation analysisBRCA1 promoterE2F-dependent repressionPocket proteins p130Chromatin immunoprecipitation analysisBRCA1 expressionProximal promoter regionCritical tumor suppressor genesUnderstanding of regulationTumor suppressor geneAdjacent promoter elementsTumor microenvironmental stressE2F complexesProtein p130Transcriptional regulationBasal repressionPromoter occupancyLog-phase cellsBasal repressorPromoter elementsTarget genes
2005
The Human Alpha Hemoglobin Stabilizing Protein (AHSP) Gene Locus in EKLF-Deficient Erythroid Cells.
Pilon A, Zhou D, Weiss M, Townes T, Bodine D, Gallagher P. The Human Alpha Hemoglobin Stabilizing Protein (AHSP) Gene Locus in EKLF-Deficient Erythroid Cells. Blood 2005, 106: 1740. DOI: 10.1182/blood.v106.11.1740.1740.Peer-Reviewed Original ResearchCACCC siteErythroid cellsWild typeModifier genesDNase I hypersensitive site mappingLocal chromatin structureΒ-globin transcriptionErythroid-specific proteinΒ-globin gene promoterDNA-protein complexesFetal liver cellsTranscription factor EKLFChromatin immunoprecipitation analysisΒ-globin sequencesHypersensitive site mappingFetal liverMobility shift assaysPromoter-luciferase reporter plasmidProximal CACCC boxFetal liver DNACore promoter regionAHSP promoterDeficient fetal liver cellsEKLF geneChromatin modulators
2004
Multiple Defects in Erythroid Gene Expression in Erythroid Krupple-Like Factor (EKLF) Target Genes in EKLF-Deficient Mice.
Gallagher P, Pilon A, Arcasoy M, Bodine D. Multiple Defects in Erythroid Gene Expression in Erythroid Krupple-Like Factor (EKLF) Target Genes in EKLF-Deficient Mice. Blood 2004, 104: 1602. DOI: 10.1182/blood.v104.11.1602.1602.Peer-Reviewed Original ResearchDNaseI hypersensitive sitesSubtractive hybridizationHypersensitive sitesΒ-globin geneHistone H3Transcription factorsTarget genesFetal liver cellsΒ-spectrinGene expressionΒ-globinErythroid gene expressionMouse Genome 430 2.0 ArrayAffymetrix GeneChip Mouse Genome 430 2.0 ArrayFactor target genesAHSP gene expressionChromatin immunoprecipitation analysisBand 3Mature erythroid progenitorsAHSP promoterRBC membrane proteinsErythroid genesChromatin upstreamChromatin modulatorsRegulated genes
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply