2019
Wavelength-encoded laser particles for massively multiplexed cell tagging
Martino N, Kwok S, Liapis A, Forward S, Jang H, Kim H, Wu S, Wu J, Dannenberg P, Jang S, Lee Y, Yun S. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nature Photonics 2019, 13: 720-727. PMID: 32231707, PMCID: PMC7104740, DOI: 10.1038/s41566-019-0489-0.Peer-Reviewed Original ResearchLaser particleSingle-mode emissionCoherent laser lightCell taggingSemiconductor microcavitiesLaser lightLarge-scale single-cell analysisSpectral multiplexingOptical imagingSpectral crosstalkConventional fluorophoresWavelengthCharacteristic wavelengthFluorescence-based approachParticlesMicrocavitiesLinewidthProbeBiological systemsEmissionReal-time trackingComplex biological systemsMultiplexingLightFluorophoresFunctionalised iron oxide nanoparticles for multimodal optoacoustic and magnetic resonance imaging
Bell G, Balasundaram G, Attia A, Mandino F, Olivo M, Parkin I. Functionalised iron oxide nanoparticles for multimodal optoacoustic and magnetic resonance imaging. Journal Of Materials Chemistry B 2019, 7: 2212-2219. PMID: 32073580, DOI: 10.1039/c8tb02299b.Peer-Reviewed Original ResearchConceptsIron oxide nanoparticlesIron oxide coreOxide nanoparticlesOxide coreFacile synthesisRelaxivity coefficientCoordination chemistryNear-IR wavelengthsDye modificationDye attachmentNanoparticlesMultispectral optoacoustic tomography (MSOT) imagingOA analysisMRI contrastEndogenous contrastIR wavelengthsFlammaSynthesisWavelengthLiterature valuesOptoacousticsChemistryDyeProbeMultimodal characteristics
2018
Chip-scale high Q-factor glassblown microspherical shells for magnetic sensing
Freeman E, Wang C, Sumaria V, Schiff S, Liu Z, Tadigadapa S. Chip-scale high Q-factor glassblown microspherical shells for magnetic sensing. AIP Advances 2018, 8: 065214. PMID: 29938122, PMCID: PMC6002270, DOI: 10.1063/1.5030460.Peer-Reviewed Original ResearchGallery mode resonatorsExternal magnetic fieldUltra-smooth surfaceResonance frequency shiftResonance shiftsPhotoelastic effectMagnetic fieldExperimental limitsMode resonatorsLimit of detectionMagnetic sensingQ-factorFrequency shiftDetection limitShell structureShell resonatorMechanical deformationMagnetometerMagnetic forceResonatorMagnetsHzShellWavelengthLimit
2017
Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins
Nichols B, Llopis A, Palmer G, McCachren S, Senlik O, Miller D, Brooke M, Jokerst N, Geradts J, Greenup R, Ramanujam N. Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins. Journal Of Biomedical Optics 2017, 22: 026007-026007. PMID: 28241273, PMCID: PMC5321165, DOI: 10.1117/1.jbo.22.2.026007.Peer-Reviewed Original ResearchConceptsBreast tumor marginsDiffuse optical spectroscopyVisible spectral rangeSpectral imaging deviceDiffuse reflectance spectraOptical spectroscopySpectral rangeImaging arrayMorphological landscapeRaster scanningOptical surrogatesImaging devicesQuantitative functional imagingReflectance spectraImaging platformImaging probeMonte CarloCompressive sensingInverse modelContent ratioWavelengthProbeFunctional imagingSpectroscopySpectra
2014
Single nanoparticle detection using photonic crystal enhanced microscopy
Zhuo Y, Hu H, Chen W, Lu M, Tian L, Yu H, Long K, Chow E, King W, Singamaneni S, Cunningham B. Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst 2014, 139: 1007-1015. PMID: 24432353, DOI: 10.1039/c3an02295a.Peer-Reviewed Original ResearchConceptsPhotonic crystalsResonance wavelengthMetal nanoparticlesSingle-nanoparticle imagingExperimental demonstrationReflection efficiencySpatial resolutionWavelengthBiosensor surfaceTime-domain computer simulationsNanoparticle detectionIndividual nanoparticlesReflection propertiesNanoparticlesCrystalLocal reductionMetalSurface attachmentReflection magnitudeBiosensorLocal shiftsComputer simulationsMoleculesBiosensingProtein-protein Binding Detection with Nanoparticle Photonic Crystal Enhanced Microscopy (NP-PCEM)* *Research supported by National Science Foundation
Zhuo Y, Tian L, Chen W, Yu H, Singamaneni S, Cunningham B. Protein-protein Binding Detection with Nanoparticle Photonic Crystal Enhanced Microscopy (NP-PCEM)* *Research supported by National Science Foundation. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2014, 2014: 2069-2072. PMID: 25570391, DOI: 10.1109/embc.2014.6944023.Peer-Reviewed Original ResearchConceptsPhotonic crystalsLocalized surface plasmon resonance frequencyPC biosensorPhotonic crystal biosensorIndividual nanoparticlesSurface plasmon resonance frequencyPlasmon resonance frequencyResonance wavelengthExperimental demonstrationPresence of individual nanoparticlesBiosensing approachProtein-protein bindingBiosensorFunctionalized nanoparticlesNanoparticlesResonant frequencySurface adsorptionNanoparticle resolutionCrystalBinding detectionImaging approachResonanceFinite-differenceWavelength
2012
Voltage-sensitive dye recording from axons, dendrites and dendritic spines of individual neurons in brain slices.
Popovic M, Gao X, Zecevic D. Voltage-sensitive dye recording from axons, dendrites and dendritic spines of individual neurons in brain slices. Journal Of Visualized Experiments 2012, e4261. PMID: 23222505, PMCID: PMC3565854, DOI: 10.3791/4261.Peer-Reviewed Original ResearchConceptsLaser light sourceSub-micrometer resolutionLight sourceOptical recordingDetectable pharmacological effectsCurrent sensitivityVoltage-sensitive dyeSubthreshold eventsElectrical propertiesDetailed measurementsMultiple-site optical recordingVoltage-sensitive dye recordingFluorescence signalOptimal wavelengthsMembrane potential transientsElectrical signalsIndividual dendritic spinesExperimental evidenceWavelengthMeasurement oneMeasurementsBroadeningDye loadingPotential transientsBrightnessTime-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination
Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 5311-5315. PMID: 22431626, PMCID: PMC3325651, DOI: 10.1073/pnas.1119262109.Peer-Reviewed Original ResearchConceptsStructured-illumination microscopyOne-color excitationWide field natureDiffraction-limited resolutionLiquid crystal devicesSpecial fluorophoresCrystal devicesSIM setupExcitation wavelengthAcquisition speedHigh frame rateLight intensityFrame rateBiological structuresLive-cell imagingMultiple colorsMicroscopyHigh light intensityWavelengthLive cellsExcitationResolutionImaging
2010
Biomimetic Isotropic Nanostructures for Structural Coloration
Forster JD, Noh H, Liew SF, Saranathan V, Schreck CF, Yang L, Park J, Prum RO, Mochrie SG, O'Hern CS, Cao H, Dufresne ER. Biomimetic Isotropic Nanostructures for Structural Coloration. Advanced Materials 2010, 22: 2939-2944. PMID: 20414884, DOI: 10.1002/adma.200903693.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply