2019
Mitochondrial DNA stress signalling protects the nuclear genome
Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, Zhang XO, Wu L, Yan Q, Bosenberg M, Liu Y, Sulkowski PL, Tripple V, Kaech SM, Glazer PM, Shadel GS. Mitochondrial DNA stress signalling protects the nuclear genome. Nature Metabolism 2019, 1: 1209-1218. PMID: 32395698, PMCID: PMC7213273, DOI: 10.1038/s42255-019-0150-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell NucleusCytosolDNA DamageDNA-Binding ProteinsDNA, MitochondrialGenomeHigh Mobility Group ProteinsInterferon-Stimulated Gene Factor 3InterferonsMembrane ProteinsMiceMice, KnockoutMice, NudeNF-kappa BNucleotidyltransferasesProtein Serine-Threonine KinasesSignal TransductionConceptsMtDNA stressNuclear DNAGene expressionThousands of copiesMost cell typesRepair responseAcute antiviral responseNuclear genomeCircular mtDNAHigher-order structureInterferon gene expressionEssential proteinsMitochondrial DNACultured primary fibroblastsDNA stressUnphosphorylated formInterferon-stimulated gene expressionMouse melanoma cellsNDNA repairSignaling responseOxidative phosphorylationNDNA damageMtDNA damageMtDNAPrimary fibroblasts
2006
Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase
Wang W, Marimuthu A, Tsai J, Kumar A, Krupka H, Zhang C, Powell B, Suzuki Y, Nguyen H, Tabrizizad M, Luu C, West B. Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 3563-3568. PMID: 16537444, PMCID: PMC1450123, DOI: 10.1073/pnas.0600048103.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceCrystallography, X-RayCSK Tyrosine-Protein KinaseDNAEscherichia coliGene ExpressionGenetic VectorsModels, MolecularMutationNeoplasmsPhosphotransferasesProtein Structure, TertiaryProtein Tyrosine Phosphatase, Non-Receptor Type 1Protein Tyrosine PhosphatasesProtein-Tyrosine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-ablProto-Oncogene Proteins c-metRecombinant Proteinssrc-Family KinasesConceptsC-Met kinaseKinase active siteC-Abl kinaseTyrosine phosphataseUnphosphorylated formSmall molecule compoundsKinase domainProtein kinaseC-SrcActive sitePhosphorylated formC-AblKinaseIntricate networkBicistronic vectorEscherichia coliLarge familyNormal regulationX-ray crystallographyEnzyme activityConformation stateSelective inhibitorDifferent conformation statesPhosphataseInhibitors
1990
Alternate splicing in a parvoviral nonstructural gene links a common amino-terminal sequence to downstream domains which confer radically different localization and turnover characteristics
Cotmore S, Tattersall P. Alternate splicing in a parvoviral nonstructural gene links a common amino-terminal sequence to downstream domains which confer radically different localization and turnover characteristics. Virology 1990, 177: 477-487. PMID: 2142555, DOI: 10.1016/0042-6822(90)90512-p.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAphidicolinBase SequenceCapsidCell DivisionChromosome MappingDiterpenesFluorescent Antibody TechniqueGenes, ViralL CellsMiceMinute virus of miceMolecular Sequence DataMolecular WeightParvoviridaeRNA SplicingRNA, ViralSequence Homology, Nucleic AcidViral Core ProteinsViral Nonstructural ProteinsViral Structural ProteinsConceptsCommon amino-terminal domainAmino-terminal domainNS-1 moleculesCommon amino-terminal sequenceNS-1 polypeptideAmino-terminal sequenceSodium dodecyl sulfate gel electrophoresisNS-1Dodecyl sulfate gel electrophoresisUnphosphorylated formInternal exonsAlternate splicingGene productsSulfate gel electrophoresisA9 cellsNonstructural genesSpliced formsPhosphorylated formDownstream domainContiguous sequencesNonstructural proteinsSpecies migratePeptide-specific antibodiesMinute virusTurnover characteristics
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply