2013
UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota
Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Söll D, Podar M. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 5540-5545. PMID: 23509275, PMCID: PMC3619370, DOI: 10.1073/pnas.1303090110.Peer-Reviewed Original ResearchConceptsFrame TGA codonTGA codonGlycine codonHuman microbiotaSingle-cell genome sequencesSmall subunit rRNA sequencesComparative genomic analysisHorizontal gene transferUnique genetic codeGlycyl-tRNA synthetaseHuman Microbiome Project dataStrain-specific variationMost genesSuch taxaBisphosphate carboxylaseGenome sequenceGenetic codeGenomic analysisStriking diversityRRNA sequencesΒ-galactosidase activityGlycine residueStop codonCodonLacZ gene
2007
Solution Structure of an rRNA Substrate Bound to the Pseudouridylation Pocket of a Box H/ACA snoRNA
Jin H, Loria JP, Moore PB. Solution Structure of an rRNA Substrate Bound to the Pseudouridylation Pocket of a Box H/ACA snoRNA. Molecular Cell 2007, 26: 205-215. PMID: 17466623, DOI: 10.1016/j.molcel.2007.03.014.Peer-Reviewed Original ResearchConceptsPseudouridylation pocketBox H/ACA small nucleolar ribonucleoproteinsBox H/ACA snoRNAsSubstrate sequenceSmall nucleolar ribonucleoproteinSolution structureInteraction motifsNucleolar ribonucleoproteinSpecific uridinesRNA componentRRNA substrateRRNA sequencesSnoRNAsSequencePocketComplexesPseudouridylationSnoRNPsRibonucleoproteinHJ1RNAMotifInteractsStrandsUridine
1994
A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors.
O'Brien C, Wolin S. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes & Development 1994, 8: 2891-2903. PMID: 7995526, DOI: 10.1101/gad.8.23.2891.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoantibodiesAutoantigensAutoimmune DiseasesBase SequenceDNA PrimersDNA, ComplementaryFemaleHumansMolecular Sequence DataMolecular WeightMutagenesisNucleic Acid ConformationOocytesOvaryPolymerase Chain ReactionRibonucleoproteinsRNA PrecursorsRNA, Ribosomal, 5SRNA, Small CytoplasmicTranscription, GeneticXenopusConceptsDiscard pathwayRRNA precursorCytoplasmic RNA-protein complexesRNA-protein complexesVariety of vertebratesRo autoantigenRo RNPsRRNA productionProtein bindsMutant RNAsRRNA sequencesMore point mutationsAdditional nucleotidesRo proteinRRNAPoint mutationsTerminal extensionXenopus oocytesProteinRNAPathwayPossible roleVertebratesRNPsNucleotides
1983
Organization of ribosomal DNA in yellow lupine (Lupinus luteus) and sequence of the 5.8 S RNA gene
Rafalski J, Wiewiórowski M, Söll D. Organization of ribosomal DNA in yellow lupine (Lupinus luteus) and sequence of the 5.8 S RNA gene. FEBS Letters 1983, 152: 241-246. DOI: 10.1016/0014-5793(83)80388-3.Peer-Reviewed Original Research
1978
Conservation of the primary structure at the 3′ end of 18S rRNA from eucaryotic cells
Hagenbüchle O, Santer M, Steitz J, Mans R. Conservation of the primary structure at the 3′ end of 18S rRNA from eucaryotic cells. Cell 1978, 13: 551-563. PMID: 77738, DOI: 10.1016/0092-8674(78)90328-8.Peer-Reviewed Original ResearchConceptsE. coli 16S rRNAE. coli ribosomesPurine-rich regionDNA sequencing methodsRRNA moleculesEucaryotic speciesStrong homologyCDNA transcriptsCDNA copyPolynucleotidyl transferasesRNA moleculesRRNA sequencesEucaryotic cellsEucaryotic mRNAsExtensive complementarityColi ribosomesRRNAPrimary structureEnzyme ATPSequencing methodsOligonucleotide primersAMV reverse transcriptaseTerminusReverse transcriptaseSequence
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply