2009
Fanconi Anemia Complementation Group FANCD2 Protein Serine 331 Phosphorylation Is Important for Fanconi Anemia Pathway Function and BRCA2 Interaction
Zhi G, Wilson JB, Chen X, Krause DS, Xiao Y, Jones NJ, Kupfer GM. Fanconi Anemia Complementation Group FANCD2 Protein Serine 331 Phosphorylation Is Important for Fanconi Anemia Pathway Function and BRCA2 Interaction. Cancer Research 2009, 69: 8775-8783. PMID: 19861535, PMCID: PMC5912675, DOI: 10.1158/0008-5472.can-09-2312.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBRCA2 ProteinCell LineCheckpoint Kinase 1DNA DamageFanconi AnemiaFanconi Anemia Complementation Group D2 ProteinFanconi Anemia Complementation Group ProteinsHumansImmunoblottingImmunoprecipitationMass SpectrometryPhosphorylationProtein KinasesSequence Homology, Amino AcidSerineSignal TransductionConceptsS-phase checkpoint kinaseFanconi anemia DNA repair pathwayFanconi anemia pathwayRegulatory phosphorylation eventsDNA repair pathwaysFANCD1/BRCA2Phosphomimetic mutationBRCA2 interactionsPhosphorylation eventsSerine 331Checkpoint kinaseCancer susceptibility syndromeComplementation groupsRepair pathwaysPathway functionFanconi anemiaBone marrow failurePhosphorylationDownstream playersVivo interactionS331Susceptibility syndromeMarrow failurePathwayMonoubiquitylation
2007
Intramolecular and Intermolecular Fluorescence Resonance Energy Transfer in Fluorescent Protein-tagged Na-K-Cl Cotransporter (NKCC1) SENSITIVITY TO REGULATORY CONFORMATIONAL CHANGE AND CELL VOLUME* * This work was supported by National Institutes of Health Grant DK47661. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. The on-line version of this article (available at http://www.jbc.org) contains supplemental Methods 1 and Table 1.
Pedersen M, Carmosino M, Forbush B. Intramolecular and Intermolecular Fluorescence Resonance Energy Transfer in Fluorescent Protein-tagged Na-K-Cl Cotransporter (NKCC1) SENSITIVITY TO REGULATORY CONFORMATIONAL CHANGE AND CELL VOLUME* * This work was supported by National Institutes of Health Grant DK47661. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. The on-line version of this article (available at http://www.jbc.org) contains supplemental Methods 1 and Table 1. Journal Of Biological Chemistry 2007, 283: 2663-2674. PMID: 18045874, DOI: 10.1074/jbc.m708194200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsCell LineCell SizeChloridesFluorescence Resonance Energy TransferGreen Fluorescent ProteinsHumansLuminescent ProteinsModels, MolecularPhosphorylationProtein ConformationRecombinant Fusion ProteinsSharksSodium-Potassium-Chloride SymportersSolute Carrier Family 12, Member 1TransfectionConceptsFluorescence resonance energy transferRegulatory domainC-terminusLevel of FRETN-terminusFluorescent proteinFRET changesResonance energy transferRegulatory phosphorylation eventsRegulatory conformational changesFluorescent protein tagsExtreme N-terminusEmbryonic kidney cell lineYellow fluorescent proteinHuman embryonic kidney cell lineN-terminal residuesPhosphorylation eventsU.S.C. Section 1734Na-K-Cl cotransporterMembrane domainsProtein tagsKidney cell lineIntermolecular fluorescence resonance energy transferYFP fluorescenceCosts of publication
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply