2020
Automated feature quantification of Lipiodol as imaging biomarker to predict therapeutic efficacy of conventional transarterial chemoembolization of liver cancer
Stark S, Wang C, Savic LJ, Letzen B, Schobert I, Miszczuk M, Murali N, Oestmann P, Gebauer B, Lin M, Duncan J, Schlachter T, Chapiro J. Automated feature quantification of Lipiodol as imaging biomarker to predict therapeutic efficacy of conventional transarterial chemoembolization of liver cancer. Scientific Reports 2020, 10: 18026. PMID: 33093524, PMCID: PMC7582153, DOI: 10.1038/s41598-020-75120-7.Peer-Reviewed Original ResearchConceptsConventional transarterial chemoembolizationLipiodol depositionTransarterial chemoembolizationLiver cancerPeripheral depositionLipiodol depositsTherapeutic efficacyNecrotic tumor areasBaseline MRITherapy optionsTumor responseTreatment responseTumor volumeLiver lesionsLipiodolH postTumor areaH-CTHounsfield unitsBiomarkersChemoembolizationHigh rateTumorsCancerImproved response
2018
Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning—An Artificial Intelligence Concept
Abajian A, Murali N, Savic LJ, Laage-Gaupp FM, Nezami N, Duncan JS, Schlachter T, Lin M, Geschwind JF, Chapiro J. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning—An Artificial Intelligence Concept. Journal Of Vascular And Interventional Radiology 2018, 29: 850-857.e1. PMID: 29548875, PMCID: PMC5970021, DOI: 10.1016/j.jvir.2018.01.769.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic AgentsCarcinoma, HepatocellularChemoembolization, TherapeuticContrast MediaDoxorubicinEthiodized OilFemaleHumansLiver NeoplasmsMachine LearningMagnetic Resonance ImagingMaleMiddle AgedNeoplasm StagingPredictive Value of TestsRetrospective StudiesSensitivity and SpecificityTreatment OutcomeConceptsTransarterial chemoembolizationHepatocellular carcinomaTreatment responseLogistic regressionClinical patient dataPatient dataIntra-arterial therapyQuantitative European AssociationMagnetic resonance imagingLiver criteriaBaseline imagingClinical variablesTumor responseTherapeutic featuresTreatment respondersBaseline MRClinical informationImaging variablesChemoembolizationTherapeutic outcomesResonance imagingResponse criteriaEuropean AssociationPatientsMR imaging
2017
The impact of antiangiogenic therapy combined with Transarterial Chemoembolization on enhancement based quantitative tumor response assessment in patients with hepatocellular carcinoma
Smolka S, Chapiro J, Manzano W, Treilhard J, Reiner E, Deng Y, Zhao Y, Hamm B, Duncan JS, Gebauer B, Lin M, Geschwind JF. The impact of antiangiogenic therapy combined with Transarterial Chemoembolization on enhancement based quantitative tumor response assessment in patients with hepatocellular carcinoma. Clinical Imaging 2017, 46: 1-7. PMID: 28668723, PMCID: PMC5720941, DOI: 10.1016/j.clinimag.2017.05.007.Peer-Reviewed Original ResearchConceptsEarly response assessmentTransarterial chemoembolizationImaging-based criteriaResponse assessmentHepatocellular carcinomaTumor response assessmentAnti-angiogenic therapyQuantitative European AssociationTherapy armOverall survivalLiver criteriaAntiangiogenic therapyTreatment groupsPatientsSimilar associationEuropean AssociationBevacizumabChemoembolizationCarcinomaTherapyAssociationAssessmentFollowCriteriaBaseline
2016
Brain responses to biological motion predict treatment outcome in young children with autism
Yang D, Pelphrey KA, Sukhodolsky DG, Crowley MJ, Dayan E, Dvornek NC, Venkataraman A, Duncan J, Staib L, Ventola P. Brain responses to biological motion predict treatment outcome in young children with autism. Translational Psychiatry 2016, 6: e948-e948. PMID: 27845779, PMCID: PMC5314125, DOI: 10.1038/tp.2016.213.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderYoung childrenSocial information processingMultivariate pattern analysisMotivation/rewardBiological motionCore deficitComplex neurodevelopmental disorderBrain responsesResponse treatmentSpectrum disorderNeurobiological markersNeural predictorsInformation processingBehavioral interventionsIndividual childrenNeurodevelopmental disordersCurrent findingsNeural circuitsBehavioral deficitsEarly childhoodChildrenUnsuccessful interventionsNeurobiomarkersPattern analysis
2007
Challenges in image-guided therapy system design
DiMaio S, Kapur T, Cleary K, Aylward S, Kazanzides P, Vosburgh K, Ellis R, Duncan J, Farahani K, Lemke H, Peters T, Lorensen W, Gobbi D, Haller J, Clarke L, Pizer S, Taylor R, Galloway R, Fichtinger G, Hata N, Lawson K, Tempany C, Kikinis R, Jolesz F. Challenges in image-guided therapy system design. NeuroImage 2007, 37: s144-s151. PMID: 17644360, PMCID: PMC3780776, DOI: 10.1016/j.neuroimage.2007.04.026.Peer-Reviewed Original Research