2020
Local glutamate-mediated dendritic plateau potentials change the state of the cortical pyramidal neuron
Gao PP, Graham JW, Zhou WL, Jang J, Angulo S, Dura-Bernal S, Hines M, Lytton WW, Antic SD. Local glutamate-mediated dendritic plateau potentials change the state of the cortical pyramidal neuron. Journal Of Neurophysiology 2020, 125: 23-42. PMID: 33085562, PMCID: PMC8087381, DOI: 10.1152/jn.00734.2019.Peer-Reviewed Original ResearchConceptsCortical pyramidal neuronsDendritic plateau potentialsPyramidal neuronsPlateau potentialsCell bodiesBasal dendritesAfferent inputDendritic potentialsAction potentialsThin basal dendritesSomatic input resistanceThin dendritic branchesLocal dendritic potentialNeuronal statesGlutamatergic inputsFunctional neuronal ensemblesTau changesCortical neuronsVoltage-sensitive dyeDendritic spikesMembrane time constantStimulation intensityOblique branchNeuronsInput resistance
2017
The stochastic nature of action potential backpropagation in apical tuft dendrites
Short SM, Oikonomou KD, Zhou WL, Acker CD, Popovic MA, Zecevic D, Antic SD. The stochastic nature of action potential backpropagation in apical tuft dendrites. Journal Of Neurophysiology 2017, 118: 1394-1414. PMID: 28566465, PMCID: PMC5558024, DOI: 10.1152/jn.00800.2016.Peer-Reviewed Original ResearchConceptsDendritic CaPyramidal neuronsApical tuftCortical pyramidal neuronsAction potential backpropagationRat brain slicesSpontaneous synaptic inputsDifferent cortical layersVoltage-gated CaAP backpropagationAP burstsGlutamate iontophoresisSynaptic contactsSomatic APsApical trunkAP frequencyBrain slicesDendritic physiologySynaptic inputsCortical layersChannel inactivationLocal NaNeuronsSpike-timing dependent plasticityTrials
2015
Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice
Mineur YS, Bentham MP, Zhou WL, Plantenga ME, McKee SA, Picciotto MR. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice. Psychopharmacology 2015, 232: 3539-3549. PMID: 26146014, PMCID: PMC4561580, DOI: 10.1007/s00213-015-4001-3.Peer-Reviewed Original ResearchConceptsAntidepressant-like effectsPaired-pulse ratioC-Fos immunoreactivityPrefrontal cortexSwim testBrain areasRobust antidepressant-like effectsBrain regionsSex differencesMale C57BL/6J miceDepression-like behaviorEffects of guanfacineAcetylcholinesterase inhibitor physostigmineLight/dark boxBaseline sex differencesC-fos expressionDepression-like stateCritical brain regionsDifferent brain areasSex-specific changesAntidepressant efficacyCholinergic controlInhibitor physostigmineC57BL/6J miceAgonist guanfacine
2014
Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex
Moore A, Zhou W, Sirois C, Belinsky G, Zecevic N, Antic S. Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: e3919-e3928. PMID: 25197082, PMCID: PMC4169969, DOI: 10.1073/pnas.1405253111.Peer-Reviewed Original ResearchConceptsHuman fetal cortexAction potential firingFetal cortexSP neuronsSpontaneous activitySpontaneous depolarizationsYoung postmitotic neuronsGlycinergic synaptic transmissionConnexin-based gap junctionsElectrical activityAcute cortical slicesSpontaneous electrical activityWhole-cell recordingsConnexin hemichannelsGap junctionsHuman subplate neuronsPresence of connexinsSubplate neuronsSecond trimesterCortical slicesSynaptic contactsSynaptic transmissionImmunohistochemical analysisSP zonePostmitotic neurons
2011
Spontaneous Electrical Activity in the Human Fetal Cortex In Vitro
Moore A, Zhou W, Jakovcevski I, Zecevic N, Antic S. Spontaneous Electrical Activity in the Human Fetal Cortex In Vitro. Journal Of Neuroscience 2011, 31: 2391-2398. PMID: 21325506, PMCID: PMC3564513, DOI: 10.1523/jneurosci.3886-10.2011.Peer-Reviewed Original ResearchConceptsAction potential firingSpontaneous electrical activitySP neuronsPlateau depolarizationsHuman fetal neuronsElectrical activityHuman fetal cortexFunctional synaptic contactsHuman cerebral cortexSpontaneous network activitySlow-wave sleepHuman postmortem tissueSlow oscillatory patternsGABA ionotropic receptorsHuman subplate neuronsFetal neuronsSubplate neuronsCerebral cortexGestational weeksSynaptic contactsFetal cortexPostsynaptic potentialsCortical neuronsAdult neocortexSynaptic inputs
2005
A novel artemisinin derivative, 3-(12-β-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects in vitro and in vivo
Zhou W, Wu J, Wu Q, Wang J, Zhou Y, Zhou R, He P, Li X, Yang Y, Zhang Y, Li Y, Zuo J. A novel artemisinin derivative, 3-(12-β-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects in vitro and in vivo. Acta Pharmacologica Sinica 2005, 26: 1352-1358. PMID: 16225758, DOI: 10.1111/j.1745-7254.2005.00232.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Inflammatory Agents, Non-SteroidalArtemisininsCell ProliferationCells, CulturedCytokinesDose-Response Relationship, DrugHemolysisHypersensitivity, DelayedImmunosuppressive AgentsInhibitory Concentration 50Interferon-gammaInterleukin-12Lymphocyte Culture Test, MixedMaleMiceMice, Inbred BALB CMice, Inbred C57BLSuccinatesConceptsDelayed-type hypersensitivityMixed lymphocyte reactionProliferation of splenocytesSheep red blood cellsImmunosuppressive agentsCytokine productionT-cell-mediated delayed-type hypersensitivityImmunosuppressive activityVivo immune activityProinflammatory cytokine productionIL-2 secretionNovel artemisinin derivativesEnzyme-linked immunosorbentDose-dependent mannerStrong immunosuppressive activityPotential immunosuppressive agentsRed blood cellsLymphocyte reactionImmunosuppressive effectsQuantitative hemolysisImmune activityMouse modelArtemisinin derivativesConA stimulationBlood cells(5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo
Zhou R, Zhang F, He P, Zhou W, Wu Q, Xu J, Zhou Y, Tang W, Li X, Yang Y, Li Y, Zuo J. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo. International Immunopharmacology 2005, 5: 1895-1903. PMID: 16275624, DOI: 10.1016/j.intimp.2005.06.009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCell ProliferationCell SurvivalCells, CulturedCytokinesDinitrofluorobenzeneDisease Models, AnimalDiterpenesDrugs, Chinese HerbalFemaleHypersensitivity, DelayedImmunosuppressive AgentsLymphocyte ActivationLymphocyte Culture Test, MixedMaleMiceMice, Inbred BALB CSheepSpleenT-LymphocytesConceptsLLDT-8Immunosuppressive activityBLAB/c miceType hypersensitivity reactionSheep red blood cellsTh1-type cytokinesHumoral immune responseProliferation of splenocytesImmune-related diseasesHigh immunosuppressive activityPotential therapeutic agentNovel triptolide analogRed blood cellsLymphocyte reactionHypersensitivity reactionsImmunosuppressive effectsInflammatory cytokinesLow acute toxicityC miceImmune responseType cytokinesTriptolide analoguesAntibody productionTherapeutic agentsBlood cellsSynthesis and Immunosuppressive Activity of New Artemisinin Derivatives. 1. [12(β or α)-Dihydroartemisininoxy]phen(ox)yl Aliphatic Acids and Esters
Yang Z, Zhou W, Sui Y, Wang J, Wu J, Zhou Y, Zhang Y, He P, Han J, Tang W, Li Y, Zuo J. Synthesis and Immunosuppressive Activity of New Artemisinin Derivatives. 1. [12(β or α)-Dihydroartemisininoxy]phen(ox)yl Aliphatic Acids and Esters. Journal Of Medicinal Chemistry 2005, 48: 4608-4617. PMID: 15999998, DOI: 10.1021/jm048979c.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody FormationArtemisininsB-LymphocytesCell ProliferationConcanavalin ADinitrofluorobenzeneErythrocytesEstersFatty AcidsFemaleHypersensitivity, DelayedImmunosuppressive AgentsIn Vitro TechniquesLipopolysaccharidesMaleMiceMice, Inbred BALB CMitogensSesquiterpenesSheepStructure-Activity RelationshipT-LymphocytesConceptsB cell proliferationSheep red blood cellsT cell proliferationCell proliferationImmunosuppressive activityDelayed-type hypersensitivity reactionCytotoxicity of lymphocytesNew artemisinin derivativesPotential immunosuppressive agentsRed blood cellsImmunosuppressive agentsHypersensitivity reactionsT cellsInhibition activityArtemisinin derivativesAntibody productionCyclosporin ADihydroartemisinin derivativesBlood cellsInhibitory effectHigh efficacyLipopolysaccharideConcanavalin AProliferationHighest inhibition activityInhibition of S-Adenosyl-l-homocysteine Hydrolase Induces Immunosuppression
Wu Q, Fu Y, Zhou W, Wang J, Feng Y, Liu J, Xu J, He P, Zhou R, Tang W, Wang G, Zhou Y, Yang Y, Ding J, Li X, Chen X, Yuan C, Lawson B, Zuo J. Inhibition of S-Adenosyl-l-homocysteine Hydrolase Induces Immunosuppression. Journal Of Pharmacology And Experimental Therapeutics 2005, 313: 705-711. PMID: 15640397, DOI: 10.1124/jpet.104.080416.Peer-Reviewed Original ResearchMeSH KeywordsAdenosylhomocysteinaseAnimalsAntigens, CDB7-1 AntigenB7-2 AntigenCell SurvivalDose-Response Relationship, DrugDown-RegulationEnzyme ActivationEnzyme InhibitorsFemaleGrowth InhibitorsImmunosuppressive AgentsLymphocyte Culture Test, MixedMaleMembrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLConceptsTHP-1 cellsImmunosuppressive effectsTumor necrosis factor-alpha productionDelayed-type hypersensitivity reactionS-adenosyl-L-homocysteine hydrolaseNecrosis factor-alpha productionLevels of CD80IL-12 productionMixed lymphocyte reactionT cell inhibitionHuman monocytic THP-1 cellsThioglycollate-stimulated peritoneal macrophagesT cell functionT cell proliferationImmunosuppressive therapeutic agentsT cell costimulationMonocytic THP-1 cellsDose-dependent mannerImmunologic effectsIL-12Lymphocyte reactionHypersensitivity reactionsCytokine outputMacrophage activationType III inhibitor