2024
Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport
Wu Y, Ding C, Sharif B, Weinreb A, Swaim G, Hao H, Yogev S, Watanabe S, Hammarlund M. Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport. Journal Of Cell Biology 2024, 223: e202305105. PMID: 38470363, PMCID: PMC10932739, DOI: 10.1083/jcb.202305105.Peer-Reviewed Original ResearchConceptsKinesin-1C. elegansN-terminal domainRetrograde trafficAnterograde trafficTransport mitochondriaMitochondria transportPolar localizationMiro-1CRISPR engineeringMitochondria localizationDisordered regionsMitochondriaTransport complexMitochondria distributionAxonal transportAnterograde transportAnterograde axonal transportMotor complexMiroAdaptorCRISPRGenesOptimizing Visualization of Axonal Transport of Endogenous Cargo by Fluorescence Microscopy in Living Caenorhabditis elegans.
Glomb O, Lyu M, Yogev S. Optimizing Visualization of Axonal Transport of Endogenous Cargo by Fluorescence Microscopy in Living Caenorhabditis elegans. Journal Of Visualized Experiments 2024 PMID: 38436410, DOI: 10.3791/66236.Peer-Reviewed Original ResearchConceptsSynaptic vesicle precursorsCaenorhabditis elegansAxonal cargosLoss of axonal transportCRISPR-Cas9 genome editingAxonal transportImpairs neuronal growthNeuronal cell biologySite of synthesisCas9 genome editingRAB-3Vesicle precursorsC. elegansGenome editingEndogenous labelingEndogenous cargoAxonal proteinsLiving Caenorhabditis elegansCell biologyCytoplasmic backgroundFluorescence microscopyCargoNeuronal growthNeuronal cell bodiesCaenorhabditis
2023
A kinesin-1 adaptor complex controls bimodal slow axonal transport of spectrin in Caenorhabditis elegans
Glomb O, Swaim G, Munoz LLancao P, Lovejoy C, Sutradhar S, Park J, Wu Y, Cason S, Holzbaur E, Hammarlund M, Howard J, Ferguson S, Gramlich M, Yogev S. A kinesin-1 adaptor complex controls bimodal slow axonal transport of spectrin in Caenorhabditis elegans. Developmental Cell 2023, 58: 1847-1863.e12. PMID: 37751746, PMCID: PMC10574138, DOI: 10.1016/j.devcel.2023.08.031.Peer-Reviewed Original ResearchEnd-binding protein 1 promotes specific motor-cargo association in the cell body prior to axonal delivery of dense core vesicles
Park J, Xie Y, Miller K, De Camilli P, Yogev S. End-binding protein 1 promotes specific motor-cargo association in the cell body prior to axonal delivery of dense core vesicles. Current Biology 2023, 33: 3851-3864.e7. PMID: 37586371, PMCID: PMC10529979, DOI: 10.1016/j.cub.2023.07.052.Peer-Reviewed Original ResearchConceptsKIF1A/UNCTrans-GolgiDense-core vesiclesEnd-binding protein 1Microtubule growthEnd-binding protein EB1Calponin homology domainMicrotubule-associated proteinsDCV biogenesisCore vesiclesSorting machineryHomology domainAxonal deliveryProtein EB1DCV cargosEndogenous cargoUnrelated proteinsUnexpected roleFunction experimentsGolgiEarly stepsProtein 1UNCNeuronal functionProteinThe C. elegans anchor cell transcriptome: ribosome biogenesis drives cell invasion through basement membrane
Costa D, Kenny-Ganzert I, Chi Q, Park K, Kelley L, Garde A, Matus D, Park J, Yogev S, Goldstein B, Gibney T, Pani A, Sherwood D. The C. elegans anchor cell transcriptome: ribosome biogenesis drives cell invasion through basement membrane. Development 2023, 150 PMID: 37039075, PMCID: PMC10259517, DOI: 10.1242/dev.201570.Peer-Reviewed Original ResearchConceptsRibosome biogenesisCell invasionAnchor cell invasionTranslation of proteinsFocused RNAi screenGene expression profilesAC invasionRibosome productionRNAi screenEndomembrane systemBM transmigrationRibosomal proteinsSec61 transloconCell transcriptomeBasement membrane barriersGene enrichmentExpression profilesTumor proteinTranscriptomeER stressCancer progressionInvasion regulatorsMembrane barrierProteinBiogenesis
2021
Distinguishing synaptic vesicle precursor navigation of microtubule ends with a single rate constant model
Gramlich M, Balseiro-Gómez S, Tabei S, Parkes M, Yogev S. Distinguishing synaptic vesicle precursor navigation of microtubule ends with a single rate constant model. Scientific Reports 2021, 11: 3444. PMID: 33564025, PMCID: PMC7873188, DOI: 10.1038/s41598-021-82836-7.Peer-Reviewed Original Research
2017
Local inhibition of microtubule dynamics by dynein is required for neuronal cargo distribution
Yogev S, Maeder CI, Cooper R, Horowitz M, Hendricks AG, Shen K. Local inhibition of microtubule dynamics by dynein is required for neuronal cargo distribution. Nature Communications 2017, 8: 15063. PMID: 28406181, PMCID: PMC5399302, DOI: 10.1038/ncomms15063.Peer-Reviewed Original Research
2016
Microtubule Organization Determines Axonal Transport Dynamics
Yogev S, Cooper R, Fetter R, Horowitz M, Shen K. Microtubule Organization Determines Axonal Transport Dynamics. Neuron 2016, 92: 449-460. PMID: 27764672, PMCID: PMC5432135, DOI: 10.1016/j.neuron.2016.09.036.Peer-Reviewed Original Research
2014
Cellular and Molecular Mechanisms of Synaptic Specificity
Yogev S, Shen K. Cellular and Molecular Mechanisms of Synaptic Specificity. Annual Review Of Cell And Developmental Biology 2014, 30: 1-21. PMID: 25150010, DOI: 10.1146/annurev-cellbio-100913-012953.Peer-Reviewed Original Research
2010
Generation of distinct signaling modes via diversification of the Egfr ligand-processing cassette
Rousso T, Lynch J, Yogev S, Roth S, Schejter E, Shilo B. Generation of distinct signaling modes via diversification of the Egfr ligand-processing cassette. Journal Of Cell Science 2010, 123: e1-e1. DOI: 10.1242/jcs.081646.Peer-Reviewed Original ResearchPolarized Secretion of Drosophila EGFR Ligand from Photoreceptor Neurons Is Controlled by ER Localization of the Ligand-Processing Machinery
Yogev S, Schejter ED, Shilo BZ. Polarized Secretion of Drosophila EGFR Ligand from Photoreceptor Neurons Is Controlled by ER Localization of the Ligand-Processing Machinery. PLOS Biology 2010, 8: e1000505. PMID: 20957186, PMCID: PMC2950126, DOI: 10.1371/journal.pbio.1000505.Peer-Reviewed Original ResearchConceptsRhomboid 3Photoreceptor neuronsEndoplasmic reticulum localizationAxonal terminiDrosophila visual systemRhomboid proteasesLigand SpitzTrafficking stepsER localizationSubcellular localizationPolarized secretionEGFR ligandsPhotoreceptor axonsCell bodiesTerminusLocalizationNeuronal cell bodiesSecretionTraffickingMachineryProteinERNeuronsProteaseAxons
2008
Drosophila EGFR signalling is modulated by differential compartmentalization of Rhomboid intramembrane proteases
Yogev S, Schejter ED, Shilo B. Drosophila EGFR signalling is modulated by differential compartmentalization of Rhomboid intramembrane proteases. The EMBO Journal 2008, 27: 1219-1230. PMID: 18369317, PMCID: PMC2367402, DOI: 10.1038/emboj.2008.58.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CompartmentationCell LineDrosophila melanogasterDrosophila ProteinsEndoplasmic ReticulumEpidermal Growth FactorErbB ReceptorsEye ProteinsGerm CellsHydrolysisIntracellular MembranesMembrane ProteinsProtein KinasesReceptors, Invertebrate PeptideRho GTP-Binding ProteinsSerine EndopeptidasesSignal TransductionConceptsLate compartmentsRho proteinsDifferential compartmentalizationEGFR activationRhomboid intramembrane proteasesEGF receptor activationAmount of chaperoneEGF receptor ligandsIntramembrane proteasesDrosophila EGFRSecretory pathwayGerm lineCompartment localizationSubsequent secretionProteinCompartmentalizationReceptor activationRho 3CompartmentsActivationChaperonesERProteasePathwayReceptor ligands