2024
Bioinformatic prediction of proteins relevant to functions of the bacterial OLE ribonucleoprotein complex
Fernando C, Breaker R. Bioinformatic prediction of proteins relevant to functions of the bacterial OLE ribonucleoprotein complex. MSphere 2024, 9: e00159-24. PMID: 38771028, PMCID: PMC11332333, DOI: 10.1128/msphere.00159-24.Peer-Reviewed Original ResearchOLE RNANoncoding RNA classesRNP complexesRNA classesSequence conservationProtein partnersBiochemical functionsDiverse stress conditionsProtein binding partnersEmergence of proteinsPhylogenetic profilesRibonucleoprotein complexSpore formationBacterial speciesCellular stressExtremophilic bacteriaProtein componentsRibonucleoproteinGenetic disruptionRNATransport proteinsRelevant to functionBioinformatics predictionGram-positivePrimitive organisms
2023
Evidence that OLE RNA is a component of a major stress‐responsive ribonucleoprotein particle in extremophilic bacteria
Breaker R, Harris K, Lyon S, Wencker F, Fernando C. Evidence that OLE RNA is a component of a major stress‐responsive ribonucleoprotein particle in extremophilic bacteria. Molecular Microbiology 2023, 120: 324-340. PMID: 37469248, DOI: 10.1111/mmi.15129.Peer-Reviewed Original ResearchConceptsOLE RNAPrecise biochemical functionFundamental cellular processesCell growthTOR complexesProtein partnersRibonucleoprotein complexesCellular processesRNP complexesBiochemical functionsGram-positive bacteriaNoncoding RNAsRibonucleoprotein particleExtremophilic bacteriaBacterial speciesGenetic disruptionStress conditionsDiverse pathwaysRNAMetabolic adaptationCell membraneExtreme environmentsCarbon sourceBacteriaComplexes
2022
Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA function
Lyon S, Harris K, Odzer N, Wilkins S, Breaker R. Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA function. Journal Of Biological Chemistry 2022, 298: 102674. PMID: 36336078, PMCID: PMC9723947, DOI: 10.1016/j.jbc.2022.102674.Peer-Reviewed Original ResearchConceptsOLE RNARNP complexesRNA-protein binding assaysPrecise biochemical functionRNA structural motifsInability of cellsNatural binding sitesRibonucleoprotein complexesRNA functionBiochemical functionsExhibit phenotypesBacterial proteinsK-turnKink turnBacillus haloduransDisruptive mutationsSame proteinBacterial speciesProtein recognitionAnaerobic bacterial speciesFunctional roleSecondary structureRNAProteinOapB
2016
Prospects for Noncoding RNA Discovery in Bacteria
Breaker R. Prospects for Noncoding RNA Discovery in Bacteria. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.386.1.Peer-Reviewed Original ResearchNoncoding RNAsNovel biochemical functionLarge noncoding RNAsBacterial noncoding RNAsRNA world organismsSelf-cleaving ribozymesRiboswitch candidatesRNA discoveryBiological validation studiesBiochemical functionsBioinformatics analysisModern cellsWorld organismsRNAGreat diversityStructural diversityNovel ribozymesRibozymeDiversityBacteriaDiscoveryRiboswitchRNAsOrganismsCells
1999
In Vitro Selection of Nucleic Acid Enzymes
Breaker R, Kurz M. In Vitro Selection of Nucleic Acid Enzymes. Current Topics In Microbiology And Immunology 1999, 243: 137-158. PMID: 10453642, DOI: 10.1007/978-3-642-60142-2_8.Peer-Reviewed Original ResearchConceptsDiversity of enzymesYears of evolutionNucleic acid enzymesEvolutionary historyNucleic acidsBiochemical functionsDNA substratesMetabolic machineryVitro SelectionProtein enzymesCatalytic functionBiological catalystsAcid enzymesHydrolysis reactionProteinEnzymeNatural functionRibozymeDistinct classesRNAEssential componentReactionMachineryCatalystDiversity