2024
Glucose Regulation of β-Cell KATP Channels: It Is Time for a New Model!
Merrins M, Kibbey R. Glucose Regulation of β-Cell KATP Channels: It Is Time for a New Model! Diabetes 2024, 73: 856-863. PMID: 38768366, PMCID: PMC11109790, DOI: 10.2337/dbi23-0032.Peer-Reviewed Original ResearchConceptsB-cell metabolismInsulin secretionEfficiency of mitochondrial ATP productionModel of glucose-stimulated insulin secretionGlucose-stimulated insulin secretionMitochondrial ATP productionNADPH productionGenetic evidenceInitial insulin secretionATP productionGlycolytic enzymesOXPHOSPyruvate kinaseATP/ADP ratioHealthy B cellsKATP channel closureB cellsDiabetes pathophysiologyGlycolysisStoichiometric yieldKATP channelsBioenergeticsATP/ADPMembrane depolarizationMetabolism
2023
Loss of ZNF148 enhances insulin secretion in human pancreatic β cells
de Klerk E, Xiao Y, Emfinger C, Keller M, Berrios D, Loconte V, Ekman A, White K, Cardone R, Kibbey R, Attie A, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023, 8: e157572. PMID: 37288664, PMCID: PMC10393241, DOI: 10.1172/jci.insight.157572.Peer-Reviewed Original ResearchConceptsPancreatic β-cellsΒ-cellsSC-β cellsHuman pancreatic β-cellsInsulin secretionHuman β-cellsVesicle traffickingGenetic regulatorsStem cell-derived β cellsDirect repressionS100 genesCells identifiesZNF148Annexin A2Tetrameric complexCell membraneNovel therapeutic targetNovel therapeutic strategiesHuman isletsRegulatorTherapeutic targetCellsS100A16 expressionGlucose homeostasisTherapeutic strategies
2022
β-cell deletion of the PKm1 and PKm2 isoforms of pyruvate kinase in mice reveals their essential role as nutrient sensors for the KATP channel
Foster HR, Ho T, Potapenko E, Sdao SM, Huang SM, Lewandowski SL, VanDeusen HR, Davidson SM, Cardone RL, Prentki M, Kibbey RG, Merrins MJ. β-cell deletion of the PKm1 and PKm2 isoforms of pyruvate kinase in mice reveals their essential role as nutrient sensors for the KATP channel. ELife 2022, 11: e79422. PMID: 35997256, PMCID: PMC9444242, DOI: 10.7554/elife.79422.Peer-Reviewed Original ResearchConceptsPyruvate kinaseATP/ADPCytosolic ATP/ADPAmino acidsPKM2 isoformPK isoformsPlasma membraneNutrient sensorNutrient responsesPEP carboxykinasePKM1Mitochondrial sourcesPKM2Channel closureEssential roleInsulin secretionDifferential responsePK activityKinaseMembrane depolarizationIsoformsDeletionATPKey roleADPMetabolic cycles and signals for insulin secretion
Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metabolism 2022, 34: 947-968. PMID: 35728586, PMCID: PMC9262871, DOI: 10.1016/j.cmet.2022.06.003.Peer-Reviewed Original Research316-OR: Genetic Deletion of Beta-Cell Pkm1, Pkm2, and Pck2 Identifies PEP as an Essential Signal for Compartmentalized KATP Closure and Cycling of the Insulin Secretory Pathway
FOSTER H, HO T, POTAPENKO E, CARDONE R, KIBBEY R, MERRINS M. 316-OR: Genetic Deletion of Beta-Cell Pkm1, Pkm2, and Pck2 Identifies PEP as an Essential Signal for Compartmentalized KATP Closure and Cycling of the Insulin Secretory Pathway. Diabetes 2022, 71 DOI: 10.2337/db22-316-or.Peer-Reviewed Original ResearchΒ-cell-specific deletionΒ-cell metabolismStrong genetic evidenceSense nutrientsNutrient-stimulated insulin secretionAppropriate insulin secretionSecretory pathwayPKM2 isoformGenetic evidenceInsulin secretory pathwayPKM isoformsPKM1PCK2Essential signalAmino acidsPKM2Pyruvate kinaseADP generationΒ-cell responseInitiation of Ca2Genetic deletionIsoform expressionΒ-cellsDeletionInsulin secretionβ Cell–specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses
Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell–specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022, 7: e154198. PMID: 35603790, PMCID: PMC9220824, DOI: 10.1172/jci.insight.154198.Peer-Reviewed Original ResearchConceptsCell-specific deletionΒ-cell Ca2Insulin secretionAmino acid metabolismLow glucose conditionsRNA-seqPancreatic β-cellsLevels of enzymesZfp148Glutamate dehydrogenaseIntermediary metabolismChannel closureEnhanced insulin secretionWestern-style dietControl mice fedElevated glucose levelsAcid metabolismΒ-cellsCell functionGlucose toleranceCell Ca2Elevated sensitivityGlucose conditionsMetabolic challengesMice fedCitrullination of glucokinase is linked to autoimmune diabetes
Yang ML, Horstman S, Gee R, Guyer P, Lam TT, Kanyo J, Perdigoto AL, Speake C, Greenbaum CJ, Callebaut A, Overbergh L, Kibbey RG, Herold KC, James EA, Mamula MJ. Citrullination of glucokinase is linked to autoimmune diabetes. Nature Communications 2022, 13: 1870. PMID: 35388005, PMCID: PMC8986778, DOI: 10.1038/s41467-022-29512-0.Peer-Reviewed Original ResearchConceptsGlucose-stimulated insulin secretionResult of inflammationType 1 diabetesBeta-cell metabolismPancreatic beta cellsAutoimmune diabetesNOD miceAutoreactive CD4Inflammatory cytokinesAutoimmune biomarkersInsulin secretionT cellsBeta cellsType 1InflammationBiologic activityReactive oxygen speciesDiabetesPost-translational modificationsDiabetes biomarkersGlycogen synthesisBiomarkersCitrullinationGlucokinaseOxygen species
2021
127-OR: In Vivo Genetic Evidence That the Pyruvate Kinase Isoforms PKM1 and PKM2 Differentially Control Beta-Cell Fuel Sensing
FOSTER H, HO T, POTAPENKO E, LEWANDOWSKI S, SDAO S, VANDEUSEN H, CARDONE R, KIBBEY R, MERRINS M. 127-OR: In Vivo Genetic Evidence That the Pyruvate Kinase Isoforms PKM1 and PKM2 Differentially Control Beta-Cell Fuel Sensing. Diabetes 2021, 70 DOI: 10.2337/db21-127-or.Peer-Reviewed Original ResearchInsulin secretionPK activatorΒ-cellsNational InstituteIntact β-cellsAppropriate insulin secretionGlucose intoleranceΒ-cell-specific deletionCalcium influxVivo genetic evidenceCalcium defectsHealth resourcesLow glucoseElectrophysiological evidenceIsletsMembrane depolarizationMiceServices AdministrationSecretionExcised membrane patchesSpecific deletionMitochondrial fuelsCalcium oscillationsPKM2KATP
2020
Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway
Lewandowski SL, Cardone RL, Foster HR, Ho T, Potapenko E, Poudel C, VanDeusen HR, Sdao SM, Alves TC, Zhao X, Capozzi ME, de Souza AH, Jahan I, Thomas CJ, Nunemaker CS, Davis DB, Campbell JE, Kibbey RG, Merrins MJ. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell Metabolism 2020, 32: 736-750.e5. PMID: 33147484, PMCID: PMC7685238, DOI: 10.1016/j.cmet.2020.10.007.Peer-Reviewed Original ResearchConceptsPyruvate kinaseATP/ADPΒ-cell metabolismAppropriate insulin secretionPotential therapeutic routeSecretory pathwayMitochondrial fuelsPancreatic β-cellsInsulin secretory pathwayOxidative phosphorylationCell metabolismNutrient metabolismPhosphoenolpyruvateCell sensingPK activatorΒ-cellsCell functionInsulin secretionPK activityOxidative functionMembrane depolarizationMitochondriaPK activationΒ-cell functionADPMulti-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health
Abulizi A, Cardone RL, Stark R, Lewandowski SL, Zhao X, Hillion J, Ma L, Sehgal R, Alves TC, Thomas C, Kung C, Wang B, Siebel S, Andrews ZB, Mason GF, Rinehart J, Merrins MJ, Kibbey RG. Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health. Cell Metabolism 2020, 32: 751-766.e11. PMID: 33147485, PMCID: PMC7679013, DOI: 10.1016/j.cmet.2020.10.006.Peer-Reviewed Original ResearchConceptsInsulin secretionInsulin sensitivityPK activatorWhole-body metabolic healthPK activationMetabolic homeostasisPeripheral insulin sensitivityHFD-fed ratsEndogenous glucose productionPreclinical rodent modelsHigher insulin contentPreclinical rationaleLiver fatMetabolic healthMarkers of differentiationIslet functionRodent modelsGlucose homeostasisInsulin contentPancreatic isletsGlucose productionGlucose turnoverMitochondrial PEPCKSecretionHomeostasisGlucose Response by Stem Cell-Derived β Cells In Vitro Is Inhibited by a Bottleneck in Glycolysis
Davis JC, Alves TC, Helman A, Chen JC, Kenty JH, Cardone RL, Liu DR, Kibbey RG, Melton DA. Glucose Response by Stem Cell-Derived β Cells In Vitro Is Inhibited by a Bottleneck in Glycolysis. Cell Reports 2020, 31: 107623. PMID: 32402282, PMCID: PMC7433758, DOI: 10.1016/j.celrep.2020.107623.Peer-Reviewed Original ResearchConceptsSC-β cellsΒ-cellsHuman isletsReduced glucose-stimulated insulin secretionGlucose-stimulated insulin secretionStem cell-derived β cellsHuman β-cellsEnzyme glyceraldehydeTCA cycleGlucose challengeInsulin secretionInsulin releaseDiabetes treatmentGlucose responseCadaveric isletsBottleneck resultsEarly glycolysisTransplantable isletsCell functionIsletsIntermediate metabolitesConsistency of responsesGlycolysisCellsKinase
2019
Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels
Taddeo EP, Alsabeeh N, Baghdasarian S, Wikstrom JD, Ritou E, Sereda S, Erion K, Li J, Stiles L, Abdulla M, Swanson Z, Wilhelm J, Bellin MD, Kibbey RG, Liesa M, Shirihai O. Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels. Diabetes 2019, 69: 131-145. PMID: 31740442, PMCID: PMC6971491, DOI: 10.2337/db19-0379.Peer-Reviewed Original ResearchConceptsType 2 diabetesInsulin secretionInsulin resistanceFree fatty acidsNonesterified free fatty acidsGlucose-stimulated insulin secretionPrediabetic stateInsulin hypersecretionObese subjectsFatty acidsObese miceLean miceGlucose levelsHuman isletsPancreatic isletsΒ-cellsIsletsProton leakSecretionHyperinsulinemiaProgressive increaseDiabetesMiceMitochondrial proton leakLeak
2018
Cyclophilin D-Dependent Mitochondrial Proton Leak in ß Cells Promotes Basal Insulin Secretion
ALSABEEH N, TADDEO E, WIKSTRÖM J, RITOU E, STILES L, KIBBEY R, LIESA M, SHIRIHAI O. Cyclophilin D-Dependent Mitochondrial Proton Leak in ß Cells Promotes Basal Insulin Secretion. Diabetes 2018, 67 DOI: 10.2337/db18-312-lb.Peer-Reviewed Original ResearchMitochondrial proton leakProton leakPermeability transition poreInhibition of CypDBasal hypersecretionCyclophilin DMolecular mechanismsInsulin secretionTransition poreGenetic inhibitionHigh-fat diet animalsAmino acidsDevelopment of diabetesHypersecretion of insulinNovel targetBeta-cell failureBasal insulin secretionBasal hyperinsulinemiaFatty acidsPrediabetic subjectsPrediabetic animalsLow conductance stateBlood glucoseBasal secretionPharmacological stimulation
2017
Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms
Ferrandino G, Kaspari RR, Spadaro O, Reyna-Neyra A, Perry RJ, Cardone R, Kibbey RG, Shulman GI, Dixit VD, Carrasco N. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e9172-e9180. PMID: 29073114, PMCID: PMC5664516, DOI: 10.1073/pnas.1707797114.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisAdipose tissue lipolysisHepatic insulin resistanceThyroid hormonesHypothyroid miceImpaired suppressionInsulin resistanceTissue lipolysisInsulin secretionHigh thyroid-stimulating hormone levelsRegulation of THThyroid-stimulating hormone levelsLipid utilizationFatty liver diseaseSerum glucose levelsEndogenous glucose productionLow thyroid hormoneFatty acidsHepatic lipid utilizationLiver diseaseSevere hypothyroidismHormone levelsProfound suppressionGlucose levels