2024
Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs
Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan B, Schaudinn C, Lavigne R, Turner P, Raschke M, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nature Communications 2024, 15: 8572. PMID: 39362854, PMCID: PMC11450229, DOI: 10.1038/s41467-024-52595-w.Peer-Reviewed Original ResearchConceptsResistance trade-offBacteriophage host rangeViruses of bacteriaHuman microbial infectionsMultidrug-resistant bacterial infectionsTwo-phage cocktailMultidrug-resistant Pseudomonas aeruginosa strainsLytic bacteriophagesBiofilm-associatedEvolution assaysPlanktonic culturesBacteriophage cocktailHost rangeBacteriophageHost spectrumBacteriophage therapyCocktail designCombat biofilmsTreated bacteriaMicrobial infectionsAntimicrobial efficacyBacterial suppressionPolymerase chain reactionBacterial infectionsClinical outcomesExperimental Evolution Studies in Φ6 Cystovirus
Singhal S, Balitactac A, Nayagam A, Bahrami P, Nayeem S, Turner P. Experimental Evolution Studies in Φ6 Cystovirus. Viruses 2024, 16: 977. PMID: 38932268, PMCID: PMC11209170, DOI: 10.3390/v16060977.Peer-Reviewed Original ResearchConceptsExperimental evolution studiesFitness effects of spontaneous mutationsSpontaneous mutationsEffects of spontaneous mutationsEvolution of RNA virusesEvolution studiesEvolution of host rangeFast generation timesResponse to selectionMultiple phagesNon-pathogenic modelRNA genomeConsequence of evolutionOuter membraneHost rangeRNA virusesNovel traitsMutation rateHost cellsFitness effectsPopulation sizeMutationsCystovirusesBacteriophageGeneration timeLytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells
Zamora P, Reidy T, Armbruster C, Sun M, Van Tyne D, Turner P, Koff J, Bomberger J. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. PLOS Biology 2024, 22: e3002566. PMID: 38652717, PMCID: PMC11037538, DOI: 10.1371/journal.pbio.3002566.Peer-Reviewed Original ResearchConceptsLytic phagesLytic bacteriophagesPhage therapyAirway epithelial cellsPseudomonas aeruginosa phagesEpithelial cellsMultidrug resistanceAirway epitheliumCystic fibrosisProinflammatory cytokinesHuman respiratory epithelial cellsPhage exposurePhage familiesMammalian cell responsesHuman airway epithelial cellsInternalized phageTreat multidrug-resistantPhageBacterial isolatesTranscriptional profilesRespiratory epithelial cellsHuman hostChronic respiratory disordersBacterial biofilmsBacteriophageOptimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University
Würstle S, Lee A, Kortright K, Winzig F, An W, Stanley G, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky P, Turner P, Koff J, Chan B. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Scientific Reports 2024, 14: 2657. PMID: 38302552, PMCID: PMC10834462, DOI: 10.1038/s41598-024-52192-3.Peer-Reviewed Original ResearchConceptsEvolutionary selection pressurePhage characterizationPhage therapyPersistent bacterial infectionsBacteriophage therapyPhageSelection pressurePseudomonas aeruginosaInvestigational new drug applicationBacterial infectionsNew Drug ApplicationTherapyDrug applicationClinical applicationAutographiviridaeBacteriaPotential strategy
2023
Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance
Oromí-Bosch A, Antani J, Turner P. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. Annual Review Of Virology 2023, 10: 503-524. PMID: 37268007, DOI: 10.1146/annurev-virology-012423-110530.Peer-Reviewed Original ResearchConceptsPhage therapyPhage resistanceBacterial resistanceEvolution of phage resistancePhage-resistant bacteriaEvolution of bacterial resistanceBacteria-specific virusesTreatment of intractable infectionsAlternative antimicrobial strategiesPersonalized medicine treatmentsPhage strategyClinically favorable outcomesBacterial pathogensBacterial populationsPhageTarget bacteriaAntibiotic resistanceAntimicrobial strategiesIntractable infectionsWaning efficacyFavorable outcomeBacterial infectionsBacteriaTherapyPatient treatment
2022
Inhaled Bacteriophage Therapy for Multi-Drug Resistant Achromobacter.
Winzig F, Gandhi S, Lee A, Würstle S, Stanley G, Capuano I, Neuringer I, Koff J, Turner P, Chan B. Inhaled Bacteriophage Therapy for Multi-Drug Resistant Achromobacter. The Yale Journal Of Biology And Medicine 2022, 95: 413-427. PMID: 36568830, PMCID: PMC9765334.Peer-Reviewed Original ResearchConceptsCF patientsCystic fibrosisChronic pulmonary infectionGlobal public health threatBacterial lung infectionsChallenging clinical problemPublic health threatChronic bacterial lung infectionsPulmonary infectionRespiratory statusLung infectionClinical problemBacteriophage therapyInfectionAntimicrobial-resistant bacteriaTherapyHealth threatPhage therapyPatientsAMR infectionsResistant bacteriaLytic bacteriophagesPossible benefitsChemical antibioticsCurrent study
2021
Effects of historical co‐infection on host shift abilities of exploitative and competitive viruses
Singhal S, Turner P. Effects of historical co‐infection on host shift abilities of exploitative and competitive viruses. Evolution 2021, 75: 1878-1888. PMID: 33969482, DOI: 10.1111/evo.14263.Peer-Reviewed Original ResearchConceptsNovel hostRNA viral pathogensHost population densityViral growthPhage genotypesCo-infecting virusesHost specificityIntracellular competitionHost exploitationHost genotypeEcological historyOriginal hostInfected bacteriaRNA bacteriophagesRapid evolutionEmergence potentialHostGrowth curvesPopulation densityEquivalent growthViral pathogensClonesInfectivity differencesGenotypesCompetitive viruses
2019
Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria
Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe 2019, 25: 219-232. PMID: 30763536, DOI: 10.1016/j.chom.2019.01.014.Peer-Reviewed Original ResearchConceptsPhage therapyRecent case reportsAntibiotic-resistant bacteriaResistant bacterial infectionsCase reportChemical antibioticsClinical trialsClinical utilityIntractable infectionsAnimal modelsTherapyBacterial infectionsWestern medicineCombat Antibiotic-Resistant BacteriaPhage therapy researchInfectionAntibioticsTherapy researchPhage resistanceClinicTrials
2016
Reassortment in segmented RNA viruses: mechanisms and outcomes
McDonald SM, Nelson MI, Turner PE, Patton JT. Reassortment in segmented RNA viruses: mechanisms and outcomes. Nature Reviews Microbiology 2016, 14: 448-460. PMID: 27211789, PMCID: PMC5119462, DOI: 10.1038/nrmicro.2016.46.Peer-Reviewed Original ResearchConceptsRNA virusesGenome segmentsProtein-RNA interactionsMultiple selection pressuresRNA-RNA interactionsSingle host cellSegmented RNA virusViral fitnessDifferent gene segmentsProtein setsSelection pressureHost cellsGene segmentsGeneration of reassortantsImportant pathogenReassortmentDifferent viral strainsReassortant virusesFitnessImmune recognitionHybrid virionsReassortantsVirusMore virusesPlantsGeneralized selection to overcome innate immunity selects for host breadth in an RNA virus
Wasik BR, Muñoz‐Rojas A, Okamoto KW, Miller‐Jensen K, Turner PE. Generalized selection to overcome innate immunity selects for host breadth in an RNA virus. Evolution 2016, 70: 270-281. PMID: 26882316, DOI: 10.1111/evo.12845.Peer-Reviewed Original ResearchConceptsVesicular stomatitis virus populationsInnate immunityRNA virusesHost cell levelVirus-host coevolutionDifferent species originViral fitnessCompetent cellsVSV populationsHost breadthHuman cancer cellsEvolutionary historyFitness differencesHost speciesDisparate hostsSpecies originInfection successInnate immune capacityPrimate cellsInnate immune functionVirus populationsImmune deficient cellsEmergence potentialImmune competent cellsNonhuman primate cells
2010
ROLE OF EVOLVED HOST BREADTH IN THE INITIAL EMERGENCE OF AN RNA VIRUS
Turner PE, Morales NM, Alto BW, Remold SK. ROLE OF EVOLVED HOST BREADTH IN THE INITIAL EMERGENCE OF AN RNA VIRUS. Evolution 2010, 64: 3273-3286. PMID: 20633045, DOI: 10.1111/j.1558-5646.2010.01051.x.Peer-Reviewed Original ResearchConceptsHost breadthNew hostHost growthPathogen emergenceDirect selectionVesicular stomatitis virus populationsType of selectionHost shiftsPhenotypic plasticityNiche breadthSpecialist virusesHost colonizationIndirect selectionDifferent hostsPopulation varianceRNA virusesPathogen infectiousnessGeneralistsVirus populationsHostEnvironmental robustnessFortuitous changesPopulation growthGrowthVirus
2009
Predicting Virus Evolution: The Relationship between Genetic Robustness and Evolvability of Thermotolerance
Ogbunugafor CB, McBride RC, Turner PE. Predicting Virus Evolution: The Relationship between Genetic Robustness and Evolvability of Thermotolerance. Cold Spring Harbor Symposia On Quantitative Biology 2009, 74: 109-118. PMID: 19843592, DOI: 10.1101/sqb.2009.74.023.Peer-Reviewed Original ResearchConceptsGenetic robustnessVirus evolvabilityMutational inputExtant populationsEvolutionary biologistsEvolutionary eventsExperimental evolutionEvolutionary biologyVirus adaptabilityPhylogenetic methodsAdaptive thermotoleranceVirus evolutionEvolutionary processesHost populationsEvolvabilityPredictive scienceThermotoleranceNew environmentHistorical patternsMicrobesEvolutionBiologistsOrganismsBiologyCanalization
2008
Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus
Remold SK, Rambaut A, Turner PE. Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology And Evolution 2008, 25: 1138-1147. PMID: 18353798, DOI: 10.1093/molbev/msn059.Peer-Reviewed Original ResearchConceptsGenetic architectureComplex traitsHigher fitnessVirus populationsVesicular stomatitis virus populationsParallel phenotypic changesSimilar selection pressuresRNA virus populationsHigh mutation rateEvolutionary genomicsGenome evolutionHost useComplete consensus sequenceTrue pleiotropyHost adaptationAllele substitutionGenomic changesSelection pressureVesicular stomatitis virusConsensus sequenceMutation rateEcological historyPhenotypic changesRNA virusesHeLa cells
2007
Virus population extinction via ecological traps
Dennehy JJ, Friedenberg NA, Yang YW, Turner PE. Virus population extinction via ecological traps. Ecology Letters 2007, 10: 230-240. PMID: 17305806, DOI: 10.1111/j.1461-0248.2006.01013.x.Peer-Reviewed Original ResearchConceptsEcological trapsPopulation growthHigh-quality habitatRisk of extinctionHeterogeneous host communitiesNet population growthHabitat lossSpecies conservationPopulation viabilityMetapopulation scaleInfectious human virusesRNA bacteriophage phi6Population extinctionEcological conceptsEfficacy of trapsHabitatsHost bacteriaHost cellsExtinctionTrap cellsBacteriophage phi6Host communitiesViral reproductionVirus populationsViral fitness
2000
Cost of Host Radiation in an RNA Virus
Turner P, Elena S. Cost of Host Radiation in an RNA Virus. Genetics 2000, 156: 1465-1470. PMID: 11102349, PMCID: PMC1461356, DOI: 10.1093/genetics/156.4.1465.Peer-Reviewed Original ResearchConceptsHost radiationNovel hostVesicular stomatitis virusOriginal hostHost environmentSubstantial fitness gainsMammalian host cellsNovel habitatsMultiple habitatsEcological nichesExperimental populationsFitness gainsWeak selectionHost typeNew hostGenetic materialHost cellsRNA virusesMultiple host typesReduced competitivenessStomatitis virusHabitatsSlow replicationHostFitness