2024
Neutralizing antibodies after nebulized phage therapy in cystic fibrosis patients
Bernabéu-Gimeno M, Pardo-Freire M, Chan B, Turner P, Gil-Brusola A, Pérez-Tarazona S, Carrasco-Hernández L, Quintana-Gallego E, Domingo-Calap P. Neutralizing antibodies after nebulized phage therapy in cystic fibrosis patients. Med 2024, 5: 1096-1111.e6. PMID: 38917792, DOI: 10.1016/j.medj.2024.05.017.Peer-Reviewed Original ResearchMulti-drug resistanceCystic fibrosis patientsPhage therapyClinical outcomesLung infectionFibrosis patientsCystic fibrosisPseudomonas aeruginosa lung infectionAnti-phage antibodiesImmune responseStandard-of-care antibioticsInvasive routes of administrationPhage-neutralizing antibodiesBacterial loadBacterial lung infectionsCystic Fibrosis FoundationNo adverse eventsRoute of administrationPhage preparationsEmergence of antibodiesPhage detectionAntibiotic susceptibilityPhageStaphylococcus aureusBacterial eradicationLytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells
Zamora P, Reidy T, Armbruster C, Sun M, Van Tyne D, Turner P, Koff J, Bomberger J. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. PLOS Biology 2024, 22: e3002566. PMID: 38652717, PMCID: PMC11037538, DOI: 10.1371/journal.pbio.3002566.Peer-Reviewed Original ResearchConceptsLytic phagesLytic bacteriophagesPhage therapyAirway epithelial cellsPseudomonas aeruginosa phagesEpithelial cellsMultidrug resistanceAirway epitheliumCystic fibrosisProinflammatory cytokinesHuman respiratory epithelial cellsPhage exposurePhage familiesMammalian cell responsesHuman airway epithelial cellsInternalized phageTreat multidrug-resistantPhageBacterial isolatesTranscriptional profilesRespiratory epithelial cellsHuman hostChronic respiratory disordersBacterial biofilmsBacteriophageAddressing the Research and Development Gaps in Modern Phage Therapy
Turner P, Azeredo J, Buurman E, Green S, Haaber J, Haggstrom D, de Figueiredo Carvalho K, Kirchhelle C, Moreno M, Pirnay J, Portillo M. Addressing the Research and Development Gaps in Modern Phage Therapy. PHAGE 2024, 5: 30-39. DOI: 10.1089/phage.2023.0045.Peer-Reviewed Original ResearchOptimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University
Würstle S, Lee A, Kortright K, Winzig F, An W, Stanley G, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky P, Turner P, Koff J, Chan B. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Scientific Reports 2024, 14: 2657. PMID: 38302552, PMCID: PMC10834462, DOI: 10.1038/s41598-024-52192-3.Peer-Reviewed Original ResearchConceptsEvolutionary selection pressurePhage characterizationPhage therapyPersistent bacterial infectionsBacteriophage therapyPhageSelection pressurePseudomonas aeruginosaInvestigational new drug applicationBacterial infectionsNew Drug ApplicationTherapyDrug applicationClinical applicationAutographiviridaeBacteriaPotential strategy
2023
Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance
Oromí-Bosch A, Antani J, Turner P. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. Annual Review Of Virology 2023, 10: 503-524. PMID: 37268007, DOI: 10.1146/annurev-virology-012423-110530.Peer-Reviewed Original ResearchConceptsPhage therapyPhage resistanceBacterial resistanceEvolution of phage resistancePhage-resistant bacteriaEvolution of bacterial resistanceBacteria-specific virusesTreatment of intractable infectionsAlternative antimicrobial strategiesPersonalized medicine treatmentsPhage strategyClinically favorable outcomesBacterial pathogensBacterial populationsPhageTarget bacteriaAntibiotic resistanceAntimicrobial strategiesIntractable infectionsWaning efficacyFavorable outcomeBacterial infectionsBacteriaTherapyPatient treatment