2019
MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors
Chen X, Burkhardt DB, Hartman AA, Hu X, Eastman AE, Sun C, Wang X, Zhong M, Krishnaswamy S, Guo S. MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nature Communications 2019, 10: 5767. PMID: 31852898, PMCID: PMC6920141, DOI: 10.1038/s41467-019-13666-5.Peer-Reviewed Original ResearchAnimalsCell CycleCell DifferentiationCell ProliferationCell Transformation, NeoplasticCyclin D1Disease Models, AnimalFemaleGene Expression Regulation, LeukemicGene Knock-In TechniquesHumansKaplan-Meier EstimateLeukemia, Myeloid, AcuteMaleMice, TransgenicMyeloid Progenitor CellsMyeloid-Lymphoid Leukemia ProteinOncogene Proteins, FusionPiperazinesPrimary Cell CulturePrognosisPyridinesMKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation
Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE, Cheng J, Min L, Zhong M, Carroll C, Gallagher PG, Lu J, Schwartz M, King MC, Krause DS, Guo S. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications 2019, 10: 1695. PMID: 30979898, PMCID: PMC6461646, DOI: 10.1038/s41467-019-09636-6.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingChromatin accessibilityActin cytoskeletonSomatic cell reprogrammingPluripotency transcription factorsGlobal chromatin accessibilityGenomic accessibilityCytoskeleton (LINC) complexCell reprogrammingCytoskeletal genesTranscription factorsReprogrammingPluripotencyChromatinCytoskeletonMKL1Unappreciated aspectPathwayNuclear volumeNucleoskeletonSUN2CellsActivationGenesExpression
2017
Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration
Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, Cakir B, Kim KY, Lombroso AP, Hwang SM, Zhong M, Stanley EG, Elefanty AG, Naegele JR, Lee SH, Weissman SM, Park IH. Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell 2017, 21: 383-398.e7. PMID: 28757360, PMCID: PMC5720381, DOI: 10.1016/j.stem.2017.07.007.Peer-Reviewed Original ResearchConceptsHuman brain developmentChromatin accessibility dynamicsTransposase-accessible chromatinHigh-throughput sequencing analysisRegion-specific organoidsHuman pluripotent stem cellsRNA sequencing profilingHuman interneuron migrationPluripotent stem cellsRelated lineagesBrain developmentAccessibility dynamicsBulk assaysInterneuron migrationLineage relationshipsOrganoid techniquesSequencing profilingSequencing analysisFunctional neuronsOrganoid developmentStem cellsCortical organoidsOrganoidsBrain organoidsMGE
2016
DNA methylation on N6-adenine in mammalian embryonic stem cells
Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang G, Hon LS, Fang G, Swenberg JA, Xiao AZ. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 2016, 532: 329-333. PMID: 27027282, PMCID: PMC4977844, DOI: 10.1038/nature17640.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAlkB Homolog 1, Histone H2a DioxygenaseAnimalsCell DifferentiationDNA MethylationDNA Transposable ElementsDNA-(Apurinic or Apyrimidinic Site) LyaseEnhancer Elements, GeneticEpigenesis, GeneticEvolution, MolecularGene SilencingLong Interspersed Nucleotide ElementsMammalsMiceMouse Embryonic Stem CellsUp-RegulationX ChromosomeConceptsLINE-1 transposonsEmbryonic stem cellsN6-methyladenineMammalian genomesEpigenetic silencingDNA methylationX chromosomeMammalian embryonic stem cellsEmbryonic stem cell differentiationMouse embryonic stem cellsStem cellsStem cell differentiationMammalian evolutionTranscriptional silencingEvolutionary ageGene activationDNA modificationsL1 elementsCell differentiationSilencingTransposonN6-adenineGenomeActivation signalsChromosomes
2015
Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells
Tadeu AM, Lin S, Hou L, Chung L, Zhong M, Zhao H, Horsley V. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells. PLOS ONE 2015, 10: e0122493. PMID: 25849374, PMCID: PMC4388500, DOI: 10.1371/journal.pone.0122493.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsEmbryonic stem cellsEctoderm specificationStem cellsHuman embryonic stem cell differentiationEmbryonic stem cell differentiationStem cell differentiationKeratinocyte fateEctoderm lineageEpidermal specificationTranscriptional regulationCandidate regulatorsTranscriptional profilingEpidermal developmentGrowth factor activityProtein aP2Keratinocyte developmentCell differentiationΓ-secretase inhibitor DAPTGenesFactor activityHomeostatic conditionsEpithelial tissuesInhibitor DAPTCell signature
2014
Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs
Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M, Rafii S, Stadtfeld M, Hochedlinger K, Xiao A. Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs. Cell Stem Cell 2014, 15: 281-294. PMID: 25192463, DOI: 10.1016/j.stem.2014.06.004.Peer-Reviewed Original ResearchConceptsEmbryonic stem cellsLineage gene expressionHistone variant H2A.XCell lineage commitmentDevelopmental potentialMouse iPSC linesIPSC linesPluripotent stem cell (iPSC) technologyEpigenetic marksLineage genesEpigenetic mechanismsLineage commitmentLineage differentiationExtraembryonic differentiationStem cell technologyGene expressionTetraploid complementationIPSC clonesIPSC qualityStem cellsFunctional markersH2A.XDifferentiationIPSCsComplementationNonstochastic Reprogramming from a Privileged Somatic Cell State
Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell 2014, 156: 649-662. PMID: 24486105, PMCID: PMC4318260, DOI: 10.1016/j.cell.2014.01.020.Peer-Reviewed Original ResearchConceptsSomatic cell stateCell statesAcquisition of pluripotencyMurine hematopoietic progenitorsEndogenous Oct4Cell cycle accelerationNonstochastic mannerSomatic cellsProgeny cellsPluripotent fateYamanaka factorsCell cycleHematopoietic progenitorsP53 knockdownPluripotencyReprogrammingCycling populationFactor expressionCellsFibroblastsImportant bottleneckKnockdownProgenitorsFateExpression
2013
PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells
Juliano CE, Reich A, Liu N, Götzfried J, Zhong M, Uman S, Reenan RA, Wessel GM, Steele RE, Lin H. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 111: 337-342. PMID: 24367095, PMCID: PMC3890812, DOI: 10.1073/pnas.1320965111.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArgonaute ProteinsCell DifferentiationCell LineageCell SeparationCytoplasmEpithelial CellsFlow CytometryGene Expression RegulationHydraPhylogenyRecombinant ProteinsRNARNA InterferenceRNA Processing, Post-TranscriptionalRNA, Small InterferingSpecies SpecificityStem CellsTranscriptomeTransgenesConceptsPIWI-interacting RNAsPIWI proteinsStem/progenitor cellsProgenitor cellsPIWI-piRNA pathwayPing-pong signatureSomatic stem/progenitor cellsStem cell functionalitySomatic stem cellsInterstitial lineageNonbilaterian animalsPiwi functionPiRNA biogenesisAnimal germlineTransposon transcriptsSimple metazoanCnidarian HydraSmall RNAsEndodermal lineagesRNA functionPosttranscriptional regulatorsEpithelial lineageLineagesLikely actsPiwi