2023
Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
Benisty H, Barson D, Moberly A, Lohani S, Tang L, Coifman R, Crair M, Mishne G, Cardin J, Higley M. Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior. Nature Neuroscience 2023, 27: 148-158. PMID: 38036743, PMCID: PMC11316935, DOI: 10.1038/s41593-023-01498-y.Peer-Reviewed Original ResearchConceptsFunctional connectivitySpontaneous behaviorCortical networksCortical network activityTime-varying functional connectivityFunctional magnetic resonanceCerebral cortexAwake miceDynamic functional connectivityAwake animalsNeighboring neuronsPatterned activityDistinct behavioral statesTwo-photon microscopyNeural activityCortical signalsBehavioral statesCortexNetwork activityCortical dynamicsMagnetic resonanceDevelopmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics
Batista-Brito R, Majumdar A, Nuño A, Ward C, Barnes C, Nikouei K, Vinck M, Cardin J. Developmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics. Molecular Psychiatry 2023, 28: 3133-3143. PMID: 37069344, PMCID: PMC10618960, DOI: 10.1038/s41380-023-02066-3.Peer-Reviewed Original ResearchConceptsPV interneuronsCortical neuronsCortical circuitsCortical circuit dynamicsCortical GABAergic cellsNRG1/ErbB4Excitatory cortical neuronsParvalbumin-Expressing InterneuronsInhibitory cortical neuronsApical dendritic tuftsActivity of excitatorySecond postnatal weekProper synaptic connectivityLate postnatal developmentState-dependent modulationLoss of ERBB4Excitatory componentGABAergic cellsGABAergic inhibitionSpine densityDendritic tuftsPostnatal weekNormal tuningSynaptic connectivityReceptor ErbB4Putting the brakes on synchrony: VIP interneurons tune visually evoked rhythmic activity
Perrenoud Q, Cardin J. Putting the brakes on synchrony: VIP interneurons tune visually evoked rhythmic activity. Neuron 2023, 111: 297-299. PMID: 36731427, DOI: 10.1016/j.neuron.2023.01.004.Peer-Reviewed Original Research
2022
Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types
Kannan M, Vasan G, Haziza S, Huang C, Chrapkiewicz R, Luo J, Cardin J, Schnitzer M, Pieribone V. Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types. Science 2022, 378: eabm8797. PMID: 36378956, PMCID: PMC9703638, DOI: 10.1126/science.abm8797.Peer-Reviewed Original Research
2011
Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity
Cardin JA. Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. Journal Of Physiology-Paris 2011, 106: 104-111. PMID: 21958624, PMCID: PMC3277809, DOI: 10.1016/j.jphysparis.2011.09.005.Peer-Reviewed Original Research
2010
Cellular Mechanisms of Temporal Sensitivity in Visual Cortex Neurons
Cardin JA, Kumbhani RD, Contreras D, Palmer LA. Cellular Mechanisms of Temporal Sensitivity in Visual Cortex Neurons. Journal Of Neuroscience 2010, 30: 3652-3662. PMID: 20219999, PMCID: PMC2880457, DOI: 10.1523/jneurosci.5279-09.2010.Peer-Reviewed Original ResearchConceptsLayer 4 neuronsCortical neuronsSensory-evoked synaptic inputsVisual cortex neuronsCellular mechanismsPrimary visual cortexCortex neuronsInhibitory interneuronsCortical functionExcitatory neuronsSynaptic inputsMembrane potential responsesSpike precisionVisual cortexCortical layersExcitatory conductanceNeuronsCoincident inputsInput integrationSynchronous inputsCortexNonlinear summationTemporal sensitivityAcuityInterneuronsTargeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 2010, 5: 247-254. PMID: 20134425, PMCID: PMC3655719, DOI: 10.1038/nprot.2009.228.Peer-Reviewed Original ResearchConceptsOptical interferenceMajor long-term goalViral vectorsCell-type selectivityRecording of neuronsOptogenetic stimulationChannelrhodopsin-2Cre-dependent expressionBrain circuit functionSelective cell typesInhibitory interneuronsIntracellular recordingsVivo electrophysiologyExcitatory neuronsIntact brainType selectivityNeural subtypesOptogenetic techniquesSpecific populationsNeural activityCircuit functionNeuronsInterferenceCell typesStimulation
2009
Pinacidil induces vascular dilation and hyperemia in vivo and does not impact biophysical properties of neurons and astrocytes in vitro
Cao R, Higashikubo B, Cardin J, Knoblich U, Ramos R, Nelson M, Moore C, Brumberg J. Pinacidil induces vascular dilation and hyperemia in vivo and does not impact biophysical properties of neurons and astrocytes in vitro. Cleveland Clinic Journal Of Medicine 2009, 76: s80-s85. PMID: 19380306, PMCID: PMC4406396, DOI: 10.3949/ccjm.76.s2.16.Peer-Reviewed Original ResearchConceptsBlood volumeApplication of pinacidilWhole-cell recordingsLocal blood volumeFunctional hyperemiaVascular dilationNeocortical slicesAnesthetized ratsAwake miceSmooth muscleSelective agonistPinacidilImpact of hemodynamicsIntrinsic modulatorHyperemiaNeural activityVasodilationNeuronsVivoBiophysical propertiesNeural systemsHemodynamicsAgonistsNeocortexRats
2008
Cellular Mechanisms Underlying Stimulus-Dependent Gain Modulation in Primary Visual Cortex Neurons In Vivo
Cardin JA, Palmer LA, Contreras D. Cellular Mechanisms Underlying Stimulus-Dependent Gain Modulation in Primary Visual Cortex Neurons In Vivo. Neuron 2008, 59: 150-160. PMID: 18614036, PMCID: PMC2504695, DOI: 10.1016/j.neuron.2008.05.002.Peer-Reviewed Original ResearchConceptsSynaptic activationPrimary visual cortex neuronsCat primary visual cortexVisual cortex neuronsCellular mechanismsPrimary visual cortexNeuronal gainBackground synaptic activityVisual stimuliPostsynaptic effectsCortex neuronsIntracellular recordingsSynaptic activitySynaptic inputsVisual cortexInput resistanceVisual stimulationGain modulationSustained changesVivoSensory contextMembrane potentialNeuronal phenomenaActivationModulation
2007
Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex
Cardin JA, Palmer LA, Contreras D. Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex. Journal Of Neuroscience 2007, 27: 10333-10344. PMID: 17898205, PMCID: PMC3025280, DOI: 10.1523/jneurosci.1692-07.2007.Peer-Reviewed Original ResearchConceptsPrimary visual cortexFS cellsVisual cortexRS cellsLayer 4Feature selectivityThalamorecipient layer 4Cortical sensory processingResponses of excitatorySynaptic responsesInhibitory neuronsSynaptic inputsSynaptic integrationInhibitory cellsMembrane potential fluctuationsStimulus selectivitySpike outputLow input resistanceFiring rateSpike tuningType-specific differencesInput resistanceSpiking cellsCell type-specific differencesRegular spiking
1998
Lucifer Yellow filling of area X-projecting neurons in the high vocal center of female canaries
Benton S, Cardin J, DeVoogd T. Lucifer Yellow filling of area X-projecting neurons in the high vocal center of female canaries. Brain Research 1998, 799: 138-147. PMID: 9666104, DOI: 10.1016/s0006-8993(98)00485-5.Peer-Reviewed Original ResearchConceptsHigh vocal centerArea XForebrain nucleiCell classesLucifer Yellow fillingAuditory inputAnterior forebrain pathwayFemale canariesSlice preparationMajor projectionsSomatosensory inputHVC neuronsNeuronal populationsShort dendritesSensorimotor integrationForebrain pathwayNeuronsLucifer YellowVocal motorImmunocytochemical reactionSong systemDefinitive evidenceRelevant changesPrevious studiesRelated changes