A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging
Dong S, Cai Z, Hangel G, Bogner W, Widhalm G, Huang Y, Liang Q, You C, Kumaragamage C, Fulbright R, Mahajan A, Karbasi A, Onofrey J, de Graaf R, Duncan J. A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging. Medical Image Analysis 2024, 99: 103358. PMID: 39353335, DOI: 10.1016/j.media.2024.103358.Peer-Reviewed Original ResearchDenoising diffusion modelsDeep learning-based super-resolution methodsLearning-based super-resolution methodsMulti-scale super-resolutionGenerative modelSuper-resolution methodsDeep learning modelsHigh-resolution magnetic resonance spectroscopic imagingHigh-quality imagesPost-processing approachSuper-resolutionFlow-based networksLearning modelsLow resolutionTruncation stepLow-resolution dataSharpness adjustmentNetworkSensitivity restrictionsUncertainty estimationDiffusion modelImagesCapabilitySampling processSpectroscopic imagingHigh‐resolution extracellular pH imaging of liver cancer with multiparametric MR using Deep Image Prior
Dong S, Shewarega A, Chapiro J, Cai Z, Hyder F, Coman D, Duncan J. High‐resolution extracellular pH imaging of liver cancer with multiparametric MR using Deep Image Prior. NMR In Biomedicine 2024, 37: e5145. PMID: 38488205, DOI: 10.1002/nbm.5145.Peer-Reviewed Original ResearchDeep Image PriorU-NetUnsupervised deep learning techniquesU-Net parametersDeep learning techniquesHigh-resolution ground truthU-Net architectureSuper-resolution imagingImage priorsSuper-resolutionGround truthMean absolute errorDeepSpatial resolutionPostprocessing methodDeep imagingAbsolute errorImagesAnatomical MR imagesMR spectroscopic imagingAnatomical informationSpectroscopic imagingInformationAcquisition timeError