Featured Publications
Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GM-CSF–PI3K pathway
Boyer S, Lee H, Steele N, Zhang L, Sajjakulnukit P, Andren A, Ward M, Singh R, Basrur V, Zhang Y, Nesvizhskii A, di Magliano M, Halbrook C, Lyssiotis C. Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GM-CSF–PI3K pathway. ELife 2022, 11: e73796. PMID: 35156921, PMCID: PMC8843093, DOI: 10.7554/elife.73796.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell Transformation, NeoplasticGene Expression ProfilingGranulocyte-Macrophage Colony-Stimulating FactorHumansMetabolic Networks and PathwaysMetabolomicsMiceMice, Inbred C57BLPancreatic NeoplasmsProteomicsSignal TransductionTranscription FactorsTumor-Associated MacrophagesConceptsTumor-educated macrophagesSingle-cell RNA sequencing datasetsCancer cellsMultiomics characterizationRNA sequencing datasetsTumor-associated macrophagesPI3K-Akt pathwayPI3K pathwayMetabolic programsSequencing datasetsGene expressionMetabolic crosstalkFunction of TAMsCell typesK pathwayGM-CSFGranulocyte-macrophage colony-stimulating factorTumor promotingModel systemEpithelial cellsPathwayColony-stimulating factorMetabolic signaturesMutant KrasMalignant epithelial cells
2021
Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology
Fujiwara H, Seike K, Brooks MD, Mathew AV, Kovalenko I, Pal A, Lee HJ, Peltier D, Kim S, Liu C, Oravecz-Wilson K, Li L, Sun Y, Byun J, Maeda Y, Wicha MS, Saunders TL, Rehemtulla A, Lyssiotis CA, Pennathur S, Reddy P. Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology. Nature Immunology 2021, 22: 1440-1451. PMID: 34686860, PMCID: PMC9351914, DOI: 10.1038/s41590-021-01048-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCase-Control StudiesCell CommunicationCells, CulturedColitisColonCytotoxicity, ImmunologicDisease Models, AnimalElectron Transport Complex IIEpithelial CellsFemaleGraft vs Host DiseaseHumansImmunity, MucosalIntestinal MucosaMice, Inbred BALB CMice, Inbred C57BLMice, TransgenicMitochondriaOxidative PhosphorylationSuccinic AcidT-LymphocytesConceptsGenetic experimental approachesCell-intrinsic featuresMetabolic flux studiesIntestinal epithelial cellsOxidative phosphorylationDisease severityT cell-mediated immunopathologyT cell-mediated colitisIntestinal epithelial cell damageProtein analysisSuccinate dehydrogenaseCell-mediated immunopathologyInflammatory bowel diseaseEpithelial cell damageHuman clinical samplesSuccinate levelsEpithelial cellsCritical roleSDHAHost diseaseBowel diseaseComplementary chemicalIntestinal diseaseT cellsMetabolic alterations
2019
Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells
Libiad M, Vitvitsky V, Bostelaar T, Bak DW, Lee HJ, Sakamoto N, Fearon E, Lyssiotis CA, Weerapana E, Banerjee R. Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. Journal Of Biological Chemistry 2019, 294: 12077-12090. PMID: 31213529, PMCID: PMC6690701, DOI: 10.1074/jbc.ra119.009442.Peer-Reviewed Original ResearchConceptsSulfide quinone oxidoreductaseSulfide oxidation pathwayElectron transfer chainColon epithelial cellsMetabolic reprogrammingGlutamine-dependent reductive carboxylationMitochondrial bioenergeticsMitochondrial sulfide oxidation pathwayCentral carbon metabolismEpithelial cellsHost-microbiome interfaceS oxidation pathwayCarbon metabolismHuman colonic cryptsOxidation pathwayPathway enzymesCellular bioenergeticsGut microbial metabolismStress responseMicrobial metabolismTransfer chainReductive carboxylationReductive shiftOxygen consumption rateQuinone oxidoreductase