2023
APOBEC-1 deletion enhances cisplatin-induced acute kidney injury
Guo X, Blanc V, Davidson N, Velazquez H, Chen T, Moledina D, Moeckel G, Safirstein R, Desir G. APOBEC-1 deletion enhances cisplatin-induced acute kidney injury. Scientific Reports 2023, 13: 22255. PMID: 38097707, PMCID: PMC10721635, DOI: 10.1038/s41598-023-49575-3.Peer-Reviewed Original Research
2022
Vaccination With Leptospira interrogans PF07598 Gene Family-Encoded Virulence Modifying Proteins Protects Mice From Severe Leptospirosis and Reduces Bacterial Load in the Liver and Kidney
Chaurasia R, Salovey A, Guo X, Desir G, Vinetz JM. Vaccination With Leptospira interrogans PF07598 Gene Family-Encoded Virulence Modifying Proteins Protects Mice From Severe Leptospirosis and Reduces Bacterial Load in the Liver and Kidney. Frontiers In Cellular And Infection Microbiology 2022, 12: 926994. PMID: 35837473, PMCID: PMC9274288, DOI: 10.3389/fcimb.2022.926994.Peer-Reviewed Original ResearchConceptsLethal challenge infectionChallenge infectionBacterial loadC3H/HeJ miceKey target organClinical pathogenesisSevere leptospirosisOrgan infectionProtein immunizationHeJ miceSerovar CanicolaTarget organsAnimal modelsLeptospirosis pathogenesisCellular pathogenesisMicePathogenesisInfectionLeptospira interrogansVirulence factorsModifying proteinsImmunizationKidneyLeptospirosisLiverAssociations of Long-Term Visit-to-Visit Blood Pressure Variability With Subclinical Kidney Damage and Albuminuria in Adulthood: a 30-Year Prospective Cohort Study
Wang Y, Zhao P, Chu C, Du MF, Zhang XY, Zou T, Hu GL, Zhou HW, Jia H, Liao YY, Chen C, Ma Q, Wang D, Yan Y, Sun Y, Wang KK, Niu ZJ, Zhang X, Man ZY, Wu YX, Wang L, Li HX, Zhang J, Li CH, Gao WH, Gao K, Lu WH, Desir GV, Delles C, Chen FY, Mu JJ. Associations of Long-Term Visit-to-Visit Blood Pressure Variability With Subclinical Kidney Damage and Albuminuria in Adulthood: a 30-Year Prospective Cohort Study. Hypertension 2022, 79: 1247-1256. PMID: 35360932, PMCID: PMC9093226, DOI: 10.1161/hypertensionaha.121.18658.Peer-Reviewed Original ResearchConceptsLong-term blood pressure variabilitySubclinical kidney damageAverage real variabilityBlood pressure variabilityLong-term visitCreatinine ratioUrinary albuminMean BPKidney damageCardiovascular diseasePressure variabilityHigh riskCumulative exposureHanzhong Adolescent Hypertension StudyVisit blood pressure variabilityProspective cohort studyGlomerular filtration rateRisk of albuminuriaClinical characteristicsCohort studyOngoing cohortKidney diseaseHypertension StudyFiltration rateAlbuminuriaKidney-Targeted Renalase Agonist Prevents Cisplatin-Induced Chronic Kidney Disease by Inhibiting Regulated Necrosis and Inflammation
Guo X, Xu L, Velazquez H, Chen TM, Williams RM, Heller DA, Burtness B, Safirstein R, Desir GV. Kidney-Targeted Renalase Agonist Prevents Cisplatin-Induced Chronic Kidney Disease by Inhibiting Regulated Necrosis and Inflammation. Journal Of The American Society Of Nephrology 2022, 33: 342-356. PMID: 34921111, PMCID: PMC8819981, DOI: 10.1681/asn.2021040439.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntineoplastic AgentsCell LineCisplatinCreatinineDisease Models, AnimalGene ExpressionGlomerular Filtration RateHepatitis A Virus Cellular Receptor 1HumansKidneyMiceMice, Inbred C57BLMice, KnockoutMonoamine OxidaseNanocapsulesPeptidesRenal Insufficiency, ChronicConceptsRenal proximal tubulesSingle-cell RNA sequencing analysisMesoscale nanoparticlesFirst doseCisplatin chemotherapyProximal tubulesAgonist peptideInduced Chronic Kidney DiseaseGenetic deletionNeck squamous cell carcinomaRNA sequencing analysisCisplatin-induced AKIKidney-targeted deliveryChronic kidney diseaseDevelopment of CKDSquamous cell carcinomaAdministration of cisplatinPlasma renalaseAdvanced headCell carcinomaInflammatory cytokinesKidney diseasePlasma creatinineSystemic administrationRegulated necrosis
2019
Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease
Landau SI, Guo X, Velazquez H, Torres R, Olson E, Garcia-Milian R, Moeckel GW, Desir GV, Safirstein R. Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease. Kidney International 2019, 95: 797-814. PMID: 30904067, PMCID: PMC6543531, DOI: 10.1016/j.kint.2018.11.042.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseKidney diseaseKidney injuryCisplatin-induced chronic kidney diseaseCisplatin-induced acute kidney injuryToll-like receptor 2Regulated necrosis pathwaysReversible kidney injuryAcute kidney injuryChronic kidney injuryProximal tubular damageKidney injury markersDoses of cisplatinEvidence of fibrosisMechanisms of progressionEffective chemotherapeutic agentWestern blot analysisFirst doseInjury markersIntraperitoneal cisplatinSignificant nephrotoxicityTubular damageKidney functionSecond doseCisplatin administration
2017
Extracellular renalase protects cells and organs by outside‐in signalling
Wang Y, Safirstein R, Velazquez H, Guo X, Hollander L, Chang J, Chen T, Mu J, Desir GV. Extracellular renalase protects cells and organs by outside‐in signalling. Journal Of Cellular And Molecular Medicine 2017, 21: 1260-1265. PMID: 28238213, PMCID: PMC5487909, DOI: 10.1111/jcmm.13062.Peer-Reviewed Original ResearchConceptsProtective effectNovel therapeutic strategiesCancer cell growthBlood pressureOrgan injuryJAK/STATHeart rateTherapeutic strategiesToxic injuryCytoprotective actionMitogen-activated protein kinase pathwayRenalaseTranslational opportunitiesTumor cellsCellular actionsProtein kinase BInitial reportProtein kinase pathwayInjuryKinase BOrgansKinase pathwayGrowth-related genesCell growthExtracellular renalase
2016
A Remote Role for Renalase
Giordano FJ, Wang Y, Desir GV. A Remote Role for Renalase. EBioMedicine 2016, 9: 27-28. PMID: 27374133, PMCID: PMC4972559, DOI: 10.1016/j.ebiom.2016.06.034.Peer-Reviewed Original Research
2014
Renalase regulates peripheral and central dopaminergic activities
Quelhas-Santos J, Serrão MP, Soares-Silva I, Fernandes-Cerqueira C, Simões-Silva L, Pinho MJ, Remião F, Sampaio-Maia B, Desir GV, Pestana M. Renalase regulates peripheral and central dopaminergic activities. American Journal Of Physiology. Renal Physiology 2014, 308: f84-f91. PMID: 25411385, PMCID: PMC4338928, DOI: 10.1152/ajprenal.00274.2014.Peer-Reviewed Original ResearchConceptsKO miceUrinary excretionPlasma levelsDopaminergic activityIncreased Plasma LevelsPeripheral dopaminergic activityUrine catecholamine levelsRenal dopaminergic systemCentral dopaminergic activityL-type amino acid transporterWild-type miceAmino acid decarboxylase activityKnockout mouse modelRenalase deficiencyCatecholamine levelsDA outputUrinary dopamineAADC activityDopaminergic systemRenal cortexMouse modelDOPA ratioVivo administrationOverexpression of LAT1Amino acid transporters
2013
Renalase in hypertension and kidney disease
Desir GV, Peixoto AJ. Renalase in hypertension and kidney disease. Nephrology Dialysis Transplantation 2013, 29: 22-28. PMID: 24137013, DOI: 10.1093/ndt/gft083.Peer-Reviewed Original ResearchRenalase regulates renal dopamine and phosphate metabolism
Sizova D, Velazquez H, Sampaio-Maia B, Quelhas-Santos J, Pestana M, Desir GV. Renalase regulates renal dopamine and phosphate metabolism. American Journal Of Physiology. Renal Physiology 2013, 305: f839-f844. PMID: 23863468, PMCID: PMC3761288, DOI: 10.1152/ajprenal.00616.2012.Peer-Reviewed Original ResearchConceptsRenal DA synthesisKO micePO4 excretionDA synthesisSodium-phosphate cotransporter Npt2aCatecholamine-degrading enzymeIntrinsic renal defectRenal dopamine synthesisWild-type miceKO mice showKnockout mouse modelDopa excretionRenalase deficiencySevere hypophosphatemiaRenal dopamineSerum PO4Urinary dopaminePhosphate excretionRegular dietDietary phosphateDopamine synthesisMouse modelMice showCompensatory increaseRenal defectsDoes Kidney Disease Cause Hypertension?
Peixoto AJ, Orias M, Desir GV. Does Kidney Disease Cause Hypertension? Current Hypertension Reports 2013, 15: 89-94. PMID: 23344662, DOI: 10.1007/s11906-013-0327-6.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsChronic kidney diseaseKidney diseaseRenal functionStructural kidney diseaseGlomerular filtration ratePlasmin-mediated activationExtracellular fluid volumeProteinuric glomerular diseasesPolycystic kidney diseaseChronic hypertensionHypertension increasesEpithelial sodium channelSodium retentionFiltration rateGlomerular diseaseHypertensionCurrent evidenceDiseaseSodium channelsFluid volumeDetectable changeSevere reductionMost casesProteinuriaPatients
2011
Novel insights into the physiology of renalase and its role in hypertension and heart disease
Desir G. Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatric Nephrology 2011, 27: 719-725. PMID: 21424526, DOI: 10.1007/s00467-011-1828-7.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseKidney diseaseResistant hypertensionSympathetic toneBlood pressureRecombinant renalaseSpontaneously Hypertensive Stroke-PronePlasma renalase levelsRenalase knockout mouseSystolic blood pressureModel of hypertensionPotent antihypertensive agentSevere cardiac hypertrophyRenalase deficiencyRenalase levelsRenal functionUrine catecholaminesEssential hypertensionSalt intakeStroke proneAntihypertensive agentsCatecholamine levelsRenal sodiumSingle dosePlasma levelsIncreased renal dopamine and acute renal adaptation to a high-phosphate diet
Weinman EJ, Biswas R, Steplock D, Wang P, Lau YS, Desir GV, Shenolikar S. Increased renal dopamine and acute renal adaptation to a high-phosphate diet. American Journal Of Physiology. Renal Physiology 2011, 300: f1123-f1129. PMID: 21325500, PMCID: PMC3094044, DOI: 10.1152/ajprenal.00744.2010.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnalysis of VarianceAnimalsAromatic Amino Acid Decarboxylase InhibitorsCarbidopaCyclic AMP-Dependent Protein KinasesDopa DecarboxylaseDopamineEnzyme InhibitorsKidneyMaleMiceMice, Inbred C57BLMonoamine OxidasePhosphorus, DietaryProtein Kinase CRatsRats, Sprague-DawleySignal TransductionTime FactorsUp-RegulationConceptsHigh-phosphate dietLow-phosphate dietPhosphate excretionDopamine contentRenal dopamine receptorsRenal phosphate excretionRenal tubular reabsorptionTreatment of ratsMarkers of activationRole of dopamineRenal dopamineUrinary excretionTubular reabsorptionRenal adaptationTwo- to threefold increaseAcute increaseMonoamine oxidase ADopamine receptorsDopamine synthesisImpaired adaptationRole of renalase in the regulation of blood pressure and the renal dopamine system
Desir GV. Role of renalase in the regulation of blood pressure and the renal dopamine system. Current Opinion In Nephrology & Hypertension 2011, 20: 31-36. PMID: 21099685, DOI: 10.1097/mnh.0b013e3283412721.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseDahl salt-sensitive ratsRenal dopamine systemSalt-sensitive ratsRenalase deficiencyBlood pressureKidney diseaseRenalase levelsResistant hypertensionRecombinant renalaseDopamine systemProximal tubular sodium transportStable coronary artery diseaseComparable blood pressurePlasma renalase levelsRole of renalaseMechanisms of hypertensionNormal renal functionTubular sodium transportCoronary artery diseaseElevation of plasmaPotent antihypertensive agentSevere cardiac hypertrophyKnockout mouse modelRenalase expression
2008
Renalase deficiency in chronic kidney disease, and its contribution to hypertension and cardiovascular disease
Desir GV. Renalase deficiency in chronic kidney disease, and its contribution to hypertension and cardiovascular disease. Current Opinion In Nephrology & Hypertension 2008, 17: 181-185. PMID: 18277152, DOI: 10.1097/mnh.0b013e3282f521ba.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseKidney diseaseBlood pressureAnimal modelsCardiac functionEnd-stage renal diseaseRegulation of renalaseSalt-dependent hypertensionDevelopment of hypertensionSystolic blood pressurePlasma renalaseRenalase deficiencyCatecholamine administrationSympathetic toneRenal diseaseKidney functionSubtotal nephrectomyPlasma catecholaminesCardiovascular diseaseHypertensionLower plasmaRenalaseCatecholaminesDiseaseAbnormalitiesCatecholamines Regulate the Activity, Secretion, and Synthesis of Renalase
Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, Desir GV. Catecholamines Regulate the Activity, Secretion, and Synthesis of Renalase. Circulation 2008, 117: 1277-1282. PMID: 18299506, DOI: 10.1161/circulationaha.107.732032.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseKidney diseaseExcess catecholaminesPlasma renalase concentrationSystolic pressure increaseSympathetic nervous systemRenalase gene expressionRegulation of catecholaminesAttractive therapeutic modalityRenalase concentrationCatecholamine surgeBlood pressureNormotensive ratsCatecholamine levelsHemodynamic changesPlasma levelsRecombinant renalaseSystemic abnormalitiesRenalase activityCardiac contractilityTherapeutic modalitiesCardiac hypertrophyCatecholamine metabolismHeart rateParenteral administration
2007
Renalase, a new renal hormone: its role in health and disease
Xu J, Desir GV. Renalase, a new renal hormone: its role in health and disease. Current Opinion In Nephrology & Hypertension 2007, 16: 373-378. PMID: 17565281, DOI: 10.1097/mnh.0b013e3281bd8877.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseEnd-stage renal diseaseKidney diseaseBlood pressureRenal hormoneRenal diseaseSalt-sensitive Dahl ratsExaggerated blood pressure responseBaseline blood pressureBlood pressure responseSympathetic nervous systemImportant therapeutic modalityRenalase deficiencyCardiovascular riskDahl ratsEssential hypertensionPlasma levelsCardiac functionRecombinant renalaseCardiovascular functionCardiovascular diseaseTherapeutic modalitiesHeart rateRenalase geneAdrenergic stress
2005
Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure
Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. Journal Of Clinical Investigation 2005, 115: 1275-1280. PMID: 15841207, PMCID: PMC1074681, DOI: 10.1172/jci24066.Peer-Reviewed Original ResearchConceptsEnd-stage renal diseaseBlood pressureRenal diseaseCardiac functionNovel flavin adenine dinucleotide-dependent amine oxidaseFlavin adenine dinucleotide-dependent amine oxidaseSystemic blood pressurePeripheral vascular toneRenalase gene expressionCardiovascular morbiditySoluble monoamine oxidaseVascular toneAvailable therapiesPlasma concentrationsCardiac contractilityEndocrine functionEndocrine organHealthy subjectsHeart rateElectrolyte balanceCompensatory increaseSmall intestineKidneyRenalaseMonoamine oxidaseMolecular Diversity and Regulation of Renal Potassium Channels
Hebert SC, Desir G, Giebisch G, Wang W. Molecular Diversity and Regulation of Renal Potassium Channels. Physiological Reviews 2005, 85: 319-371. PMID: 15618483, PMCID: PMC2838721, DOI: 10.1152/physrev.00051.2003.Peer-Reviewed Original ResearchConceptsRenal potassium channelsAnimal cellsCell movementDistinct functionsMolecular diversitySuccessful cloningRenal tubule epithelial cellsExcitable cellsSingle-channel analysisBiophysical propertiesMembrane potentialTubule epithelial cellsEpithelial cellsPotassium channelsRegulationCell volumeCellsImportant roleCloningTubule cellsPlantsDiversitySignificant progressFunction
2002
On the natriuretic effect of verapamil: inhibition of ENaC and transepithelial sodium transport
Segal AS, Hayslett JP, Desir GV. On the natriuretic effect of verapamil: inhibition of ENaC and transepithelial sodium transport. American Journal Of Physiology. Renal Physiology 2002, 283: f765-f770. PMID: 12217868, DOI: 10.1152/ajprenal.00253.2001.Peer-Reviewed Original ResearchMeSH KeywordsAldosteroneAnimalsBiological Transport, ActiveCalcium Channel BlockersCells, CulturedDose-Response Relationship, DrugElectrophysiologyEpithelial Sodium ChannelsEpitheliumIn Vitro TechniquesInsulinKidneyKidney Tubules, CollectingNatriuresisNifedipineOocytesPatch-Clamp TechniquesSodiumSodium Channel BlockersSodium ChannelsVasopressinsVerapamilXenopus laevisConceptsNatriuretic effectDirect tubular effectAdministration of verapamilRemoval of extracellularTubular effectsTransepithelial sodium transportHemodynamic changesInhibition of ENaCSurrogate markerChannel blockersMicroM verapamilDistal tubulesA6 cellsMicroM amilorideUssing chambersVerapamilL-typeSodium transportBasolateral sideTransepithelial resistanceSignificant increaseApical sidePermeable supportsInhibitionTransepithelial