2021
Dietary lipids as regulators of reward processes: multimodal integration matters
Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends In Endocrinology And Metabolism 2021, 32: 693-705. PMID: 34148784, DOI: 10.1016/j.tem.2021.05.008.Peer-Reviewed Original ResearchConceptsDietary lipidsFunctional modulatorsModern food environmentLipid sensingPalatable dietObesity pandemicDopamine transmissionDA circuitsFeeding behaviorBody homeostasisDA signalingReward circuitRecent findingsDA systemEnergy-related signalsGenetic conditionsFood environmentFood overconsumptionNeural substratesLipidsRecent reportsSignalingRegulatorHomeostasisReward processesFat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity
Perszyk EE, Hutelin Z, Trinh J, Kanyamibwa A, Fromm S, Davis XS, Wall KM, Flack KD, DiFeliceantonio AG, Small DM. Fat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity. Nutrients 2021, 13: 1203. PMID: 33917347, PMCID: PMC8067354, DOI: 10.3390/nu13041203.Peer-Reviewed Original Research
2019
Rethinking Food Reward
de Araujo IE, Schatzker M, Small DM. Rethinking Food Reward. Annual Review Of Psychology 2019, 71: 1-26. PMID: 31561741, DOI: 10.1146/annurev-psych-122216-011643.Peer-Reviewed Original ResearchConceptsFood rewardReward regionsHedonic qualityBrain neural pathwaysSubliminal signalsCognitive processesBrain reward regionsConscious perceptionDietary decisionsCortical networksFlavor perceptionCaloric foodNeural pathwaysFood reinforcementRewardUncontrolled desirePerceptionDietary choicesOvereatingRecent animalHuman studiesTraditional modelsSensory receptorsDesireFindingsProcessed foods and food reward
Small DM, DiFeliceantonio AG. Processed foods and food reward. Science 2019, 363: 346-347. PMID: 30679360, DOI: 10.1126/science.aav0556.Peer-Reviewed Original Research
2018
Dopamine and diet-induced obesity
DiFeliceantonio AG, Small DM. Dopamine and diet-induced obesity. Nature Neuroscience 2018, 22: 1-2. PMID: 30559474, DOI: 10.1038/s41593-018-0304-0.Peer-Reviewed Original ResearchSupra-Additive Effects of Combining Fat and Carbohydrate on Food Reward
DiFeliceantonio AG, Coppin G, Rigoux L, Thanarajah S, Dagher A, Tittgemeyer M, Small DM. Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metabolism 2018, 28: 33-44.e3. PMID: 29909968, DOI: 10.1016/j.cmet.2018.05.018.Peer-Reviewed Original Research
2017
Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward
Veldhuizen MG, Babbs RK, Patel B, Fobbs W, Kroemer NB, Garcia E, Yeomans MR, Small DM. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Current Biology 2017, 27: 2476-2485.e6. PMID: 28803868, PMCID: PMC5745144, DOI: 10.1016/j.cub.2017.07.018.Peer-Reviewed Original ResearchConceptsCaloric loadGreater metabolic responseNon-linear associationMetabolic responseSugar-sweetened beveragesBrain responsesLow-calorie beveragesHigh-calorie beveragesNon-nutritive sweetenersGreater brain responsePost-ingestive signalsHuman studiesSweet tasteNutrient metabolismCarbohydrate metabolismNovel mechanismBeveragesPotencyAssociationMetabolismCarbohydrate rewards
2015
Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism
Burke MV, Small DM. Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology & Behavior 2015, 152: 381-388. PMID: 26048305, PMCID: PMC4661139, DOI: 10.1016/j.physbeh.2015.05.036.Peer-Reviewed Original ResearchConceptsNon-nutritive sweetenersNNS consumptionCognitive processesSugar-sweetened beverage consumptionNegative health outcomesMetabolic hormone secretionPotential biological mechanismsHormone secretionSSB intakeBody weightGut microbiotaSweet taste receptorBeverage consumptionHealth outcomesNNS useCentral mechanismsTaste receptorsBiological mechanismsMetabolic functionsPhysiological mechanismsMetabolismIntakeSecretionReceptors
2014
Working memory and reward association learning impairments in obesity
Coppin G, Nolan-Poupart S, Jones-Gotman M, Small DM. Working memory and reward association learning impairments in obesity. Neuropsychologia 2014, 65: 146-155. PMID: 25447070, PMCID: PMC4259845, DOI: 10.1016/j.neuropsychologia.2014.10.004.Peer-Reviewed Original ResearchConceptsHealthy weight individualsNegative outcomesExplicit learningReward association learningProbabilistic learning taskFunction of groupHealthy weight groupObese individualsReward associationsStimulus-rewardExecutive functionAssociation learningLearning taskExperiment 1Learning impairmentHealthy weightParadoxical preferenceWeight individualsPositive outcomesMemoryWeight groupInfluence of obesitySecond experimentCurrent studyDeficits
2013
Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity
Babbs RK, Sun X, Felsted J, Chouinard-Decorte F, Veldhuizen MG, Small DM. Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiology & Behavior 2013, 121: 103-111. PMID: 23562867, PMCID: PMC3731396, DOI: 10.1016/j.physbeh.2013.03.025.Peer-Reviewed Original ResearchConceptsBody mass indexCaudate responseMass indexCaudate nucleusBrain responsesHigher body mass indexWeight gainHealthy weight subjectsTasteless control solutionEnergy-dense foodsSelf-reported impulsivityWeight subjectsNegative associationVentral putamenDorsal striatumFood rewardDense foodsSignificant associationInverse correlationMilkshakeOverweightGreater impulsivityMeasures of impulsivityGreater responseAssociation
2012
Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger
Nolan-Poupart S, Veldhuizen MG, Geha P, Small DM. Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite 2012, 60: 168-174. PMID: 23064394, PMCID: PMC3526000, DOI: 10.1016/j.appet.2012.09.032.Peer-Reviewed Original ResearchConceptsAbsence of hungerFunctional magnetic resonance imagingSubsequent intakeRatings of hungerPeriaqueductal gray regionMidbrain responsesMagnetic resonance imagingKey reward regionsPalatable milkshakeSignificant positive associationPalatable foodResonance imagingInsular responsesOrbitofrontal cortexNeural circuitsGreater intakeMilkshake consumptionIntakeReward regionsBrain responsesEnhanced responseMilkshakePositive associationMidbrainGray regionAcute stress potentiates brain response to milkshake as a function of body weight and chronic stress
Rudenga KJ, Sinha R, Small DM. Acute stress potentiates brain response to milkshake as a function of body weight and chronic stress. International Journal Of Obesity 2012, 37: 309-316. PMID: 22430303, PMCID: PMC3381866, DOI: 10.1038/ijo.2012.39.Peer-Reviewed Original ResearchConceptsBody mass indexFunctional magnetic resonance imagingChronic stressOrbitofrontal cortexRight amygdalaBody weightPalatable foodAcute stressBasal cortisol levelsBrain responsesAmygdala responseMagnetic resonance imagingStress-related eatingMilkshake receiptPalatable milkshakeObese womenOverweight womenMass indexRight amygdala responseOFC responsesPotentiates responsesCortisol levelsLeft amygdalaResonance imagingVentral striatum
2011
Youth at Risk for Obesity Show Greater Activation of Striatal and Somatosensory Regions to Food
Stice E, Yokum S, Burger KS, Epstein LH, Small DM. Youth at Risk for Obesity Show Greater Activation of Striatal and Somatosensory Regions to Food. Journal Of Neuroscience 2011, 31: 4360-4366. PMID: 21430137, PMCID: PMC3260083, DOI: 10.1523/jneurosci.6604-10.2011.Peer-Reviewed Original ResearchConceptsNormal weight humansObese humansStriatal responsesFood intakeOrbitofrontal cortexDopamine signalingWeight gainInitial vulnerability factorsGenetic riskStriatal D2 receptorsMonetary rewardsNormal-weight adolescentsPalatable food intakeD2 receptor densityD2 receptorsHigh-risk youthParietal operculumReceptor densitySomatosensory regionsPalatable foodFoods contributesFrontal operculumReward circuitryReduced dopamineObesity
2010
Genetically Determined Differences in Brain Response to a Primary Food Reward
Felsted JA, Ren X, Chouinard-Decorte F, Small DM. Genetically Determined Differences in Brain Response to a Primary Food Reward. Journal Of Neuroscience 2010, 30: 2428-2432. PMID: 20164326, PMCID: PMC2831082, DOI: 10.1523/jneurosci.5483-09.2010.Peer-Reviewed Original ResearchConceptsBrain responsesPrimary food rewardFunctional magnetic resonanceTaqIA A1 alleleOrbital frontal cortexReward driveIndividual differencesNeural responsesFuture weight gainFood rewardPalatable foodNeuroimaging techniquesPerceptual responsesBiological underpinningsIndividual factorsFrontal cortexImpulsivityDiminished dopamineSimilar ratingsFood reinforcementRewardSpecific associationNeurophysiologyMilkshakeBody mass index
2009
Individual differences in the neurophysiology of reward and the obesity epidemic
Small DM. Individual differences in the neurophysiology of reward and the obesity epidemic. International Journal Of Obesity 2009, 33: s44-s48. PMID: 19528979, PMCID: PMC2788336, DOI: 10.1038/ijo.2009.71.Peer-Reviewed Original Research
2008
Relation of Reward From Food Intake and Anticipated Food Intake to Obesity: A Functional Magnetic Resonance Imaging Study
Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of Reward From Food Intake and Anticipated Food Intake to Obesity: A Functional Magnetic Resonance Imaging Study. Journal Of Psychopathology And Clinical Science 2008, 117: 924-935. PMID: 19025237, PMCID: PMC2681092, DOI: 10.1037/a0013600.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingAdolescent girlsGreater activationFunctional magnetic resonance imaging studySomatosensory regionsRelation of rewardGustatory cortexDopamine receptor availabilityMagnetic resonance imaging studyResonance imaging studyChocolate milkshakeTasteless solutionConsequent weight gainFood intakeBrain regionsGreater rewardsHedonic aspectsDecreased activationWeak activationRewardReceptor availabilityMilkshakeGirlsImaging studiesMagnetic resonance imagingRelation Between Obesity and Blunted Striatal Response to Food Is Moderated by TaqIA A1 Allele
Stice E, Spoor S, Bohon C, Small DM. Relation Between Obesity and Blunted Striatal Response to Food Is Moderated by TaqIA A1 Allele. Science 2008, 322: 449-452. PMID: 18927395, PMCID: PMC2681095, DOI: 10.1126/science.1161550.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAllelesBasal GangliaBody Mass IndexCaudate NucleusCorpus StriatumCuesDeoxyribonucleases, Type II Site-SpecificDopamineEatingFemaleFoodHumansHyperphagiaMagnetic Resonance ImagingObesityPolymorphism, Restriction Fragment LengthPutamenReceptors, Dopamine D2Regression AnalysisRewardSignal TransductionWeight GainConceptsDorsal striatumTaqIA restriction fragment length polymorphismConsummatory food rewardMagnetic resonance imaging studyStriatal dopamine receptorsDevelopment of obesityA1 alleleResonance imaging studyFunctional magnetic resonance imaging studyDopamine D2 receptor geneTaqIA A1 alleleObese individualsStriatal dopamineD2 receptor geneProspective dataLean individualsDopamine receptorsFood intakeStriatumImaging studiesStriatal responsesStriatal activationGenetic polymorphismsReceptor geneObesityModulation of the spatial attention network by incentives in healthy aging and mild cognitive impairment
Bagurdes LA, Mesulam MM, Gitelman DR, Weintraub S, Small DM. Modulation of the spatial attention network by incentives in healthy aging and mild cognitive impairment. Neuropsychologia 2008, 46: 2943-2948. PMID: 18602410, DOI: 10.1016/j.neuropsychologia.2008.06.005.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAgingAnalysis of VarianceAttentionCase-Control StudiesCerebral CortexCognition DisordersDementiaDiscrimination, PsychologicalHumansLimbic SystemMagnetic Resonance ImagingMatched-Pair AnalysisMiddle AgedMotivationReaction TimeReference ValuesRewardSeverity of Illness IndexSpace PerceptionConceptsSpatial attentionSpatial attention networkAttentional shiftsMild cognitive impairmentAttention networkHealthy agingOrbitofrontal cortexCovert attention taskSelective spatial attentionCognitive impairmentUnderlying neural circuitryAD-related declineAttention taskSelective attentionEmotional contentOFC activationPCC activationSpatial cuesSecondary reinforcerInfluence of incentivesPosterior cingulateNeural circuitryNovel eventsCurrent experimentsBehavioral effects
2005
Monetary Incentives Enhance Processing in Brain Regions Mediating Top-down Control of Attention
Small DM, Gitelman D, Simmons K, Bloise SM, Parrish T, Mesulam M. Monetary Incentives Enhance Processing in Brain Regions Mediating Top-down Control of Attention. Cerebral Cortex 2005, 15: 1855-1865. PMID: 15746002, DOI: 10.1093/cercor/bhi063.Peer-Reviewed Original ResearchConceptsSpatial expectancyVisual spatial attentionNon-directional cuesCurrent behavioral goalsControl of attentionTarget detection taskFaster reaction timesInferior parietal lobulePosterior cingulate cortexDifferent incentive conditionsValid cuesCentral cuesSpatial attentionMotivational mechanismsNeural processingMotivational incentivesUnimodal cortexBehavioral goalsLimbic mechanismsParietal lobuleAttention networkDetection taskCingulate cortexRelationship of activationIncentive conditions
2002
Toward an Understanding of the Brain Substrates of Reward in Humans
Small DM. Toward an Understanding of the Brain Substrates of Reward in Humans. Neuron 2002, 33: 668-671. PMID: 11879644, DOI: 10.1016/s0896-6273(02)00620-7.Peer-Reviewed Original Research