2016
Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase
Truong TH, Ung PM, Palde PB, Paulsen CE, Schlessinger A, Carroll KS. Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase. Cell Chemical Biology 2016, 23: 837-848. PMID: 27427230, PMCID: PMC4958504, DOI: 10.1016/j.chembiol.2016.05.017.Peer-Reviewed Original ResearchConceptsEpidermal growth factor receptorEpidermal growth factor receptor kinaseGrowth factor receptor kinaseDetailed functional analysisNew electrostatic interactionsFirst detailed functional analysisKinase regulationS-sulfenylationRedox biologyReceptor kinaseCatalytic loopGrowth factor receptorMolecular basisChronic oxidative stressKinase activityFunctional analysisCatalytic importanceRedox activationFactor receptorMajor classesOxidative stressCatalytic efficiencyData highlightMolecular dynamics simulationsActivation
2015
Structure of the TRPA1 ion channel suggests regulatory mechanisms
Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 2015, 520: 511-517. PMID: 25855297, PMCID: PMC4409540, DOI: 10.1038/nature14367.Peer-Reviewed Original ResearchMeSH KeywordsAllosteric RegulationAnalgesicsAnkyrin RepeatAnti-Inflammatory AgentsBinding SitesCalcium ChannelsCryoelectron MicroscopyCytosolHumansModels, MolecularNerve Tissue ProteinsPolyphosphatesProtein StabilityProtein SubunitsStructure-Activity RelationshipTransient Receptor Potential ChannelsTRPA1 Cation ChannelConceptsTRPA1 ion channelsCoil assembly domainIon channelsCovalent protein modificationSingle-particle electronAnti-inflammatory agentsTransient receptor potentialStructure-based designAllosteric domainProtein modificationRegulatory mechanismsChannel regulationNoxious chemical agentsTRPA1 regulationAssembly domainIrritant exposureTRPA1 antagonistInflammatory conditionsTissue injuryTRPA1 functionStructural mechanismsDrug metabolismPotent antagonistReceptor potentialHuman TRPA1