2012
Bursting as a source of non‐linear determinism in the firing patterns of nigral dopamine neurons
Jeong J, Shi W, Hoffman R, Oh J, Gore JC, Bunney BS, Peterson BS. Bursting as a source of non‐linear determinism in the firing patterns of nigral dopamine neurons. European Journal Of Neuroscience 2012, 36: 3214-3223. PMID: 22831464, PMCID: PMC3490015, DOI: 10.1111/j.1460-9568.2012.08238.x.Peer-Reviewed Original ResearchConceptsNigral dopamine neuronsDA neuronsFiring patternsComplex firing patternsDopamine neuronsBursting activityChloral hydrate-anesthetized ratsHalothane-anesthetized ratsRat substantia nigraReward-related learningSubstantia nigraPhasic burstsFiring activityNeuronsBursting neuronsRatsStochastic firing patternsVivoNon-linear deterministic structureActivityNigra
2007
Oscillatory firing of dopamine neurons: Differences between cells in the substantia nigra and ventral tegmental area
Zhang D, Yang S, Jin G, Bunney B, Shi W. Oscillatory firing of dopamine neurons: Differences between cells in the substantia nigra and ventral tegmental area. Synapse 2007, 62: 169-175. PMID: 18081182, DOI: 10.1002/syn.20479.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDA neuronsSubstantia nigraDopamine neuronsTegmental areaSlow oscillationsChloral hydrate-anesthetized ratsSN DA neuronsVTA DA neuronsDegree of burstingVariability of firingAfferent inputAdjacent substantia nigraOscillatory firingFiring rateNeuronsNeuronal oscillationsNigraCellsFiringRatsBrainImportant roleFunctional Coupling between the Prefrontal Cortex and Dopamine Neurons in the Ventral Tegmental Area
Gao M, Liu C, Yang S, Jin G, Bunney B, Shi W. Functional Coupling between the Prefrontal Cortex and Dopamine Neurons in the Ventral Tegmental Area. Journal Of Neuroscience 2007, 27: 5414-5421. PMID: 17507563, PMCID: PMC6672349, DOI: 10.1523/jneurosci.5347-06.2007.Peer-Reviewed Original ResearchConceptsVentral tegmental areaVTA DA neuronsDA neuronsPrefrontal cortexPFC neuronsDopamine neuronsTegmental areaAction potential-dependent DA releaseSlow oscillationsChloral hydrate-anesthetized ratsIntra-PFC infusionsFunctional couplingPFC terminalsVTA DAGlutamate releaseDA releaseExcitatory influenceRelay neuronsInhibitory influenceCell activityBrain functionNeuronsImportant new insightsCortexMultiple pathwaysClozapine Blocks D-Amphetamine-Induced Excitation of Dopamine Neurons in the Ventral Tegmental Area
Shi W, Zhang X, Pun C, Bunney B. Clozapine Blocks D-Amphetamine-Induced Excitation of Dopamine Neurons in the Ventral Tegmental Area. Neuropsychopharmacology 2007, 32: 1922-1928. PMID: 17299514, DOI: 10.1038/sj.npp.1301334.Peer-Reviewed Original ResearchConceptsD2-like receptorsDA neuronsVentral tegmental areaD-amphetamineDA receptorsExcitatory effectsTegmental areaΑ1 receptor antagonist prazosinAtypical antipsychotic drug clozapineChloral hydrate-anesthetized ratsTypical antipsychotic drug haloperidolCentral dopamine transmissionCurrent antipsychotic drugsReceptor antagonist prazosinAntipsychotic drug haloperidolAntipsychotic drug clozapineAntagonist prazosinExcitatory pathwaysDA transmissionDopamine neuronsΑ1 receptorsSystemic administrationAntipsychotic drugsExcitatory inputsIncomplete blockade
2000
Anatomic basis of sequence‐dependent predictability exhibited by nigral dopamine neuron firing patterns
Hoffman R, Shi W, Bunney B. Anatomic basis of sequence‐dependent predictability exhibited by nigral dopamine neuron firing patterns. Synapse 2000, 39: 133-138. PMID: 11180500, DOI: 10.1002/1098-2396(200102)39:2<133::aid-syn4>3.0.co;2-k.Peer-Reviewed Original Research
1999
Endogenous DA‐mediated feedback inhibition of DA neurons: Involvement of both D1‐ and D2‐like receptors
Shi W, Pun C, Smith P, Bunney B. Endogenous DA‐mediated feedback inhibition of DA neurons: Involvement of both D1‐ and D2‐like receptors. Synapse 1999, 35: 111-119. PMID: 10611636, DOI: 10.1002/(sici)1098-2396(200002)35:2<111::aid-syn3>3.0.co;2-7.Peer-Reviewed Original ResearchConceptsDA neuronsLike receptorsDA cellsEndogenous DAChloral hydrate-anesthetized ratsNigral DA cellsD2-like receptorsSingle-unit recordingsCerveau isolé preparationFeedback inhibitionParkinsonian animalsAntagonist racloprideAntagonist SCH23390DA releaseEndogenous dopamineD-amphetamineParkinson's diseaseUnit recordingsSCH23390Receptor activationBaseline activityReceptorsChloral hydrateNeuronsConcurrent activation
1997
D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons
Shi W, Smith P, Pun C, Millet B, Bunney B. D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons. Journal Of Neuroscience 1997, 17: 7988-7994. PMID: 9315916, PMCID: PMC6793911, DOI: 10.1523/jneurosci.17-20-07988.1997.Peer-Reviewed Original ResearchConceptsD2-like receptorsDA cellsDA autoreceptorsDA neuronsD1 agonistLow dosesDopamine D1-like receptorsD1 inhibitionD1 effectNigral DA cellsMidbrain DA neuronsD2 agonist quinpiroleD1-like receptorsDA receptor subtypesMidbrain dopamine neuronsOnly low dosesDA receptorsEndogenous DAAgonist quinpiroleD2 agonistIntranigral applicationDopamine neuronsReceptor subtypesRat preparationTarget neurons
1996
Effects of Lesions in the Medial Prefrontal Cortex on the Activity of Midbrain Dopamine Neurons
Shim S, Bunney B, Shi W. Effects of Lesions in the Medial Prefrontal Cortex on the Activity of Midbrain Dopamine Neurons. Neuropsychopharmacology 1996, 15: 437-441. PMID: 8914116, DOI: 10.1016/s0893-133x(96)00052-8.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDA neuronsPrefrontal cortexSubstantia nigraPFC lesionsBursting activityFiring rateActive DA cellsSN DA neuronsActive DA neuronsMidbrain dopamine neuronsSingle-unit recordingsMedial prefrontal cortexDA cellsDopamine neuronsTegmental areaLocal injectionIbotenic acidUnit recordingsLesionsSame lesionNeuronsRatsActivityCortex
1995
Ritanserin, a 5-HT2A/2C antagonist, reverses direct dopamine agonist-induced inhibition of midbrain dopamine neurons.
Shi W, Nathaniel P, Bunney B. Ritanserin, a 5-HT2A/2C antagonist, reverses direct dopamine agonist-induced inhibition of midbrain dopamine neurons. Journal Of Pharmacology And Experimental Therapeutics 1995, 274: 735-40. PMID: 7636736.Peer-Reviewed Original ResearchConceptsEffects of ritanserinBasal firing rateDA autoreceptorsDA neuronsDA agonistsP-chlorophenylalanineSubstantia nigra DA neuronsSingle-unit recording techniquesChloral hydrate-anesthetized ratsFiring rateDA agonist quinpiroleDirect DA agonistsIndirect DA agonistPostsynaptic D2 receptorsExtrapyramidal side effectsD2-like receptorsSignificant therapeutic effectAgonist-induced inhibitionMidbrain dopamine neuronsMidbrain dopamine systemAgonist quinpiroleDA antagonistsMDL 100907Receptor antagonistDopamine neurons
1990
Neurotensin attenuates dopamine D2 agonist quinpirole-induced inhibition of midbrain dopamine neurons
Shi W, Bunney B. Neurotensin attenuates dopamine D2 agonist quinpirole-induced inhibition of midbrain dopamine neurons. Neuropharmacology 1990, 29: 1095-1097. PMID: 1982340, DOI: 10.1016/0028-3908(90)90119-c.Peer-Reviewed Original ResearchConceptsD2 agonistDA cellsSingle-unit recording techniquesMidbrain DA neuronsCentral DA systemsDopamine D2 agonistMidbrain dopamine neuronsSpecific D2 agonistDA neuronsIntracerebroventricular administrationDopamine neuronsSpontaneous activityDA systemInhibitory effectRecording techniquesAgonistsNeuronsBiochemical studiesCellsQuinpiroleNeurotensinRatsAdministration
1989
The effect of acute and chronic treatment with SCH 23390 on the spontaneous activity of midbrain dopamine neurons
Esposito E, Bunney B. The effect of acute and chronic treatment with SCH 23390 on the spontaneous activity of midbrain dopamine neurons. European Journal Of Pharmacology 1989, 162: 109-113. PMID: 2656273, DOI: 10.1016/0014-2999(89)90609-2.Peer-Reviewed Original ResearchConceptsSubstantia nigra pars compactaVentral tegmental areaActive DA neuronsSCH 23390Chronic treatmentDA neuronsDopamine neuronsDepolarization blockSpontaneous activityDA receptor blockadeAcute subcutaneous injectionGroups of ratsMidbrain dopamine neuronsChronic haloperidolReceptor blockadeChronic administrationPars compactaTegmental areaAntipsychotic drugsSubcutaneous injectionChronic experimentsMarked reductionNeuronsTreatmentHaloperidol
1988
Effects of Acute and Chronic Neuroleptic Treatment on the Activity of Mid brain Dopamine Neuronsa
BUNNEY B. Effects of Acute and Chronic Neuroleptic Treatment on the Activity of Mid brain Dopamine Neuronsa. Annals Of The New York Academy Of Sciences 1988, 537: 77-85. PMID: 2904786, DOI: 10.1111/j.1749-6632.1988.tb42097.x.Peer-Reviewed Original ResearchConceptsAD administrationDA releaseDA cell activityChronic neuroleptic treatmentMidbrain DA neuronsRelease of DAEffects of AcuteNeurological side effectsDA neuronsNeuroleptic treatmentAcute effectsNerve terminalsSpontaneous activitySide effectsCell activityMarked increaseAdministrationProjection areaPrimary effectReleaseAcuteMarked effectNeuronsActivityBiochemical techniques
1987
Central dopamine-peptide interactions: Electrophysiological studies
Bunney B. Central dopamine-peptide interactions: Electrophysiological studies. Neuropharmacology 1987, 26: 1003-1009. PMID: 3309707, DOI: 10.1016/0028-3908(87)90079-7.Peer-Reviewed Original ResearchConceptsDA systemSelective non-peptide antagonistMidbrain DA systemsCentral DA systemsNon-peptide antagonistsPotential therapeutic valuePotential clinical interestDA neuronsDA cellsElectrophysiological studiesMental disordersTherapeutic valueEffects of peptidesSpecific receptorsAnatomical evidenceClinical interestEndogenous substancesPeptide systemBrainPhysiological activityVariety of peptidesBehavioral studiesPhysiological relevancePeptidesActive peptidesElectrophysiological studies on the specificity of the cholecystokinin antagonist proglumide
Chiodo L, Freeman A, Bunney B. Electrophysiological studies on the specificity of the cholecystokinin antagonist proglumide. Brain Research 1987, 410: 205-211. PMID: 3036308, DOI: 10.1016/0006-8993(87)90317-9.Peer-Reviewed Original ResearchConceptsExcitatory effectsInhibitory effectA9 DA neuronsCCK receptor blockadeSelective CCK antagonistsMidbrain dopamine cellsPrefrontal cortical neuronsInhibitory potencyDA neuronsReceptor blockadeChronic treatmentSensorimotor cortexC-terminal octapeptideCCK antagonistsDA cellsSubstance PAPO effectsCortical neuronsDopamine cellsIntravenous administrationSelective antagonistRat CNSProglumideElectrophysiological studiesCholecystokininActivity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin
Freeman A, Bunney B. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Research 1987, 405: 46-55. PMID: 3032350, DOI: 10.1016/0006-8993(87)90988-7.Peer-Reviewed Original ResearchConceptsCCK-8A9 neuronsDA neuronsDopaminergic neuronsUnrestrained ratsVentral tegmental area cellsFiring rateCCK-8 pretreatmentDA cell activitySingle dopaminergic neuronsEffects of apomorphineA10 dopaminergic neuronsActivity of A9Sulfated CCK-8A10 neuronsDA agonistsAnesthetized ratsParalyzed ratsSequential dosesA10 cellsCell activityCell firingUnit firingUnit activityApomorphinePopulation response of midbrain dopaminergic neurons to neuroleptics: further studies on time course and nondopaminergic neuronal influences
Chiodo L, Bunney B. Population response of midbrain dopaminergic neurons to neuroleptics: further studies on time course and nondopaminergic neuronal influences. Journal Of Neuroscience 1987, 7: 629-633. PMID: 2881987, PMCID: PMC6569064, DOI: 10.1523/jneurosci.07-03-00629.1987.Peer-Reviewed Original ResearchConceptsDepolarization-induced inactivationFiring rateDopaminergic neuronsDopamine receptor agonist apomorphineMonths' continuous treatmentAcute oral administrationBasal firing rateActive DA neuronsReceptor agonist apomorphineA10 dopaminergic neuronsActive dopamine neuronsClassical antipsychotic drugsDopamine-containing neuronsPresence of haloperidolHr of administrationLong-term treatmentMidbrain dopaminergic neuronsCholecystokinin receptor antagonistAge-matched controlsHaloperidol resultsA10 regionDA neuronsAcute administrationAgonist apomorphineNeuroleptic haloperidolThe Electrophysiological and Biochemical Pharmacology of the Mesolimbic and Mesocortical Dopamine Neurons
Bannon M, Freeman A, Chiodo L, Bunney B, Roth R. The Electrophysiological and Biochemical Pharmacology of the Mesolimbic and Mesocortical Dopamine Neurons. 1987, 329-374. DOI: 10.1007/978-1-4613-1819-4_5.Peer-Reviewed Original ResearchMidbrain DA systemsDA systemDA-sensitive adenylate cyclaseMesocortical DA systemMesocortical dopamine neuronsNorepinephrine-containing neuronsMidbrain DA neuronsNigrostriatal DA systemMesolimbic DA systemAnatomical studyFluorescence histochemical techniqueSubsequent anatomical studiesDA neuronsNeurons projectCerebral cortexDA pathwayDopamine neuronsLimbic regionsMidbrain dopamineUnconditioned behaviorTopic of reviewNeuronsAdenylate cyclaseBiochemical pharmacologyAnatomical aspects
1985
Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons
Chiodo L, Bunney B. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. Journal Of Neuroscience 1985, 5: 2539-2544. PMID: 2863337, PMCID: PMC6565310, DOI: 10.1523/jneurosci.05-09-02539.1985.Peer-Reviewed Original ResearchConceptsDA neuronsClozapine administrationChronic treatmentDepolarization inactivationExtracellular single cell recording techniquesInhibitory neurotransmitter gamma-aminobutyric acidNeurotransmitter gamma-aminobutyric acidVentral tegmental area (VTA) dopamineSingle cell recording techniquesA10 DA neuronsVivo spontaneous activityMidbrain DA neuronsChloral hydrate anesthesiaCombination of drugsMidbrain dopamine neuronsGamma-aminobutyric acidDifferential effectsMechanism of actionAcute treatmentMicroiontophoretic applicationSubstantia nigraReceptor antagonistDA cellsDopamine neuronsSpontaneous activityOpposing effects of striatonigral feedback pathways on midbrain dopamine cell activity
Grace A, Bunney B. Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Research 1985, 333: 271-284. PMID: 2986775, DOI: 10.1016/0006-8993(85)91581-1.Peer-Reviewed Original ResearchConceptsInhibitory postsynaptic potentialsDA cellsStriatal stimulationReticulata neuronsDA neuronsRebound depolarizationReversal potentialSubstantia nigra zona reticulata neuronsStriatonigral GABAergic pathwayMidbrain dopamine cell activityDopamine cell activitySame stimulation parametersChloride injectionChloride channel blockerChloride reversal potentialSimilar reversal potentialsSimilar time courseGABAergic pathwayGABAergic projectionsZona reticulataPostsynaptic potentialsSystemic injectionChannel blockersIntracellular recordingsStriatal cellsFiring properties of substantia nigra dopaminergic neurons in freely moving rats
Freeman A, Meltzer L, Bunney B. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sciences 1985, 36: 1983-1994. PMID: 3990520, DOI: 10.1016/0024-3205(85)90448-5.Peer-Reviewed Original ResearchConceptsPutative DA neuronsDA neuronsDopaminergic neuronsParalyzed ratsSubstantia nigra dopaminergic neuronsFiring patternsPutative dopaminergic neuronsNigrostriatal DA systemNigra dopaminergic neuronsApomorphine-induced inhibitionSingle spike activityPattern of firingSingle-unit recordingsDegree of burstSubstantia nigraDA cellsElectrophysiological characteristicsUnit recordingsSpike activityFiring propertiesRatsFiring rateNeuronsDA systemCells