2023
Heparin is essential for optimal cell signaling by FGF21 and for regulation of βKlotho cellular stability
An S, Mohanty J, Tome F, Suzuki Y, Lax I, Schlessinger J. Heparin is essential for optimal cell signaling by FGF21 and for regulation of βKlotho cellular stability. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2219128120. PMID: 36745784, PMCID: PMC9962926, DOI: 10.1073/pnas.2219128120.Peer-Reviewed Original ResearchConceptsHeparan sulfate proteoglycanCellular stabilityCell membraneSingle-molecule fluorescenceProtein kinase responsesChinese hamster ovary cellsFGF moleculesHamster ovary cellsFactor bindsReceptor assemblyReceptor dimerizationGrowth factor bindsHigh-affinity bindingFGF1 stimulationKinase responseCHO cellsOvary cellsSulfate proteoglycanIntracellular CaKlotho proteinFGFR1cPotential roleRegulationΒKlothoCells
2022
Isoform-specific inhibition of FGFR signaling achieved by a de-novo-designed mini-protein
Park JS, Choi J, Cao L, Mohanty J, Suzuki Y, Park A, Baker D, Schlessinger J, Lee S. Isoform-specific inhibition of FGFR signaling achieved by a de-novo-designed mini-protein. Cell Reports 2022, 41: 111545. PMID: 36288716, PMCID: PMC9636537, DOI: 10.1016/j.celrep.2022.111545.Peer-Reviewed Original ResearchConceptsFibroblast growth factor receptorC isoformsFibroblast growth factor ligandsLigand-binding regionSilico design strategyIsoform-specific inhibitionGrowth factor ligandsAlternative splicingCellular signalingRegulated processGrowth factor receptorDevelopment of therapeuticsFGFR isoformsFactor ligandCellular analysisFactor receptorMechanistic insightsKlotho proteinSpecific interactionsMB7Distinct subsetsHigh affinitySplicingSignalingFGF
2021
Structural basis for ligand reception by anaplastic lymphoma kinase
Li T, Stayrook SE, Tsutsui Y, Zhang J, Wang Y, Li H, Proffitt A, Krimmer SG, Ahmed M, Belliveau O, Walker IX, Mudumbi KC, Suzuki Y, Lax I, Alvarado D, Lemmon MA, Schlessinger J, Klein DE. Structural basis for ligand reception by anaplastic lymphoma kinase. Nature 2021, 600: 148-152. PMID: 34819665, PMCID: PMC8639777, DOI: 10.1038/s41586-021-04141-7.Peer-Reviewed Original Research
2020
FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho
Suzuki Y, Kuzina E, An SJ, Tome F, Mohanty J, Li W, Lee S, Liu Y, Lax I, Schlessinger J. FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 31800-31807. PMID: 33257569, PMCID: PMC7749347, DOI: 10.1073/pnas.2018554117.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesCalcinosisCell MembraneFibroblast Growth Factor-23Fibroblast Growth FactorsGlucuronidaseHEK293 CellsHumansHyperostosis, Cortical, CongenitalHyperphosphatemiaImmunoglobulin Fc FragmentsKlotho ProteinsMutationOsteomalaciaProtein BindingProtein DomainsProtein MultimerizationRecombinant Fusion ProteinsRickets, HypophosphatemicConceptsFGF receptorsTotal internal reflection fluorescence microscopyChimeric receptor moleculesReflection fluorescence microscopyBinding sitesDisulfide bridge formationCritical metabolic processesMAPK responseCytoplasmic domainGrowth factor familyTerminal tailFactor familyKinase activationSimilar binding affinitiesExtracellular domainFGFR1 activationTandem repeatsMetabolic processesDisulfide bridgesCell surfaceDistinct ligandsCell membraneFluorescence microscopyDistinct high-affinity binding sitesPhosphate homeostasisSelective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core
Liosi ME, Krimmer SG, Newton AS, Dawson T, Puleo DE, Cutrona KJ, Suzuki Y, Schlessinger J, Jorgensen WL. Selective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core. Journal Of Medicinal Chemistry 2020, 63: 5324-5340. PMID: 32329617, PMCID: PMC7949251, DOI: 10.1021/acs.jmedchem.0c00192.Peer-Reviewed Original Research
2013
Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region
Reshetnyak AV, Nelson B, Shi X, Boggon TJ, Pavlenco A, Mandel-Bausch EM, Tome F, Suzuki Y, Sidhu SS, Lax I, Schlessinger J. Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 17832-17837. PMID: 24127596, PMCID: PMC3816449, DOI: 10.1073/pnas.1317118110.Peer-Reviewed Original ResearchConceptsKIT antibodyReceptor tyrosine kinase inhibitionGastrointestinal stromal tumorsAcute myeloid leukemiaDurable disease controlTyrosine kinase inhibitorsTyrosine kinase inhibitionSomatic oncogenic mutationsUnique therapeutic approachClinical progressionStromal tumorsMyeloid leukemiaTherapeutic approachesDramatic responseTreatment of KITDrug resistanceDisease controlIsolated antibodyKIT inhibitionKinase inhibitorsAntibodiesCancerCell proliferationOncogenic mutationsKinase inhibition
2006
Receptor Protein Tyrosine Phosphatase γ Is a Marker for Pyramidal Cells and Sensory Neurons in the Nervous System and Is Not Necessary for Normal Development
Lamprianou S, Vacaresse N, Suzuki Y, Meziane H, Buxbaum JD, Schlessinger J, Harroch S. Receptor Protein Tyrosine Phosphatase γ Is a Marker for Pyramidal Cells and Sensory Neurons in the Nervous System and Is Not Necessary for Normal Development. Molecular And Cellular Biology 2006, 26: 5106-5119. PMID: 16782895, PMCID: PMC1489161, DOI: 10.1128/mcb.00101-06.Peer-Reviewed Original ResearchConceptsReceptor protein tyrosine phosphatase gammaProtein tyrosine phosphatase gammaPotential biological functionsObvious phenotypeBeta-galactosidase geneRPTPgammaVariety of tissuesBiological functionsMouse embryosBiological roleSensory neuronsLack of expressionNormal developmentSensory organsCortical layers IIExpressionGlial cellsPyramidal neuronsAdult brainStratum pyramidalePyramidal cellsLow expressionPotential rolePrimary culturesLayers IIStructural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase
Wang W, Marimuthu A, Tsai J, Kumar A, Krupka H, Zhang C, Powell B, Suzuki Y, Nguyen H, Tabrizizad M, Luu C, West B. Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 3563-3568. PMID: 16537444, PMCID: PMC1450123, DOI: 10.1073/pnas.0600048103.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceCrystallography, X-RayCSK Tyrosine-Protein KinaseDNAEscherichia coliGene ExpressionGenetic VectorsModels, MolecularMutationNeoplasmsPhosphotransferasesProtein Structure, TertiaryProtein Tyrosine Phosphatase, Non-Receptor Type 1Protein Tyrosine PhosphatasesProtein-Tyrosine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-ablProto-Oncogene Proteins c-metRecombinant ProteinsSrc-Family KinasesConceptsC-Met kinaseKinase active siteC-Abl kinaseTyrosine phosphataseUnphosphorylated formSmall molecule compoundsKinase domainProtein kinaseC-SrcActive sitePhosphorylated formC-AblKinaseIntricate networkBicistronic vectorEscherichia coliLarge familyNormal regulationX-ray crystallographyEnzyme activityConformation stateSelective inhibitorDifferent conformation statesPhosphataseInhibitors
2005
Crystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma
Kumar A, Mandiyan V, Suzuki Y, Zhang C, Rice J, Tsai J, Artis D, Ibrahim P, Bremer R. Crystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma. Journal Of Molecular Biology 2005, 348: 183-193. PMID: 15808862, DOI: 10.1016/j.jmb.2005.02.039.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl ImidodiphosphateAmino Acid SequenceApoproteinsCrystallography, X-RayHumansLymphoma, Large B-Cell, DiffuseModels, MolecularMolecular Sequence DataMutationProtein BindingProtein ConformationProtein Serine-Threonine KinasesProto-Oncogene MasProto-Oncogene ProteinsProto-Oncogene Proteins c-pim-1Sequence AlignmentConceptsKinase activitySerine/threonine kinaseAberrant somatic hypermutationSomatic hypermutationKinase inhibitor scaffoldN-terminal lobePim1 mutantsTypical kinasesCo-crystal structureThreonine kinaseProtein kinaseBackbone hydrogen bondsKinase PIM1Apo formBiological functionsProline residuesPIM1 inhibitorsNovel chemical classUnique structural featuresLow molecular massInhibitor scaffoldsCell survivalMolecular massPosition 123PIM1A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design
Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nature Biotechnology 2005, 23: 201-207. PMID: 15685167, DOI: 10.1038/nbt1059.Peer-Reviewed Original ResearchConceptsDrug designX-ray crystallographyStructural analysisChemical synthesisDetailed structural analysisScaffold derivativesPyrazole derivativesChemical substitutionPotent PDE4 inhibitorsCarboxylic estersCellular processesDrug candidatesMolecular basisNew inhibitorsCyclic nucleotide phosphodiesterasesCocrystallographyLarge familyCompoundsNucleotide phosphodiesterasesDerivativesPhosphodiesterasesCrystallographyInhibitorsEfficient methodFamily
2004
Structural Basis for the Activity of Drugs that Inhibit Phosphodiesterases
Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. Structural Basis for the Activity of Drugs that Inhibit Phosphodiesterases. Structure 2004, 12: 2233-2247. PMID: 15576036, DOI: 10.1016/j.str.2004.10.004.Peer-Reviewed Original ResearchConceptsHigh-resolution crystal structuresInvariant glutamineHydrogen bondingCatalytic domainStructural basisStructural insightsIsoform-selective inhibitorsHydrolysis of cAMPHydrophobic residuesInhibitor bindingActive siteCrystal structureCocrystal structureHydrophobic clampLarge familyDifferent inhibitorsPhosphodiesterasesVariety of diseasesSelective PDE inhibitorsInhibitorsActivity of drugsPDE inhibitorsBondingEnzymeResiduesA Glutamine Switch Mechanism for Nucleotide Selectivity by Phosphodiesterases
Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. A Glutamine Switch Mechanism for Nucleotide Selectivity by Phosphodiesterases. Molecular Cell 2004, 15: 279-286. PMID: 15260978, DOI: 10.1016/j.molcel.2004.07.005.Peer-Reviewed Original ResearchMeSH Keywords3',5'-Cyclic-AMP Phosphodiesterases3',5'-Cyclic-GMP PhosphodiesterasesCatalytic DomainCrystallography, X-RayCyclic AMPCyclic GMPCyclic Nucleotide Phosphodiesterases, Type 3Cyclic Nucleotide Phosphodiesterases, Type 4Cyclic Nucleotide Phosphodiesterases, Type 5GlutamineHumansModels, MolecularProtein ConformationConceptsNucleotide selectivityKey specificity determinantKey histidine residuesFamily of enzymesHigh-resolution co-crystal structuresCo-crystal structureNew PDE inhibitorsGlutamine switchInvariant glutamineSpecificity determinantsTypes of phosphodiesterasesGlutamine functionsGlutamine residuesHistidine residuesSwitch mechanismStructural understandingPhosphodiesterasesCyclic nucleotidesResiduesCritical rolePurine moietyCGMPCAMPPDE inhibitorsNucleotides