2011
Lipid metabolism and body composition in Gclm(−/−) mice
Kendig EL, Chen Y, Krishan M, Johansson E, Schneider SN, Genter MB, Nebert DW, Shertzer HG. Lipid metabolism and body composition in Gclm(−/−) mice. Toxicology And Applied Pharmacology 2011, 257: 338-348. PMID: 21967773, PMCID: PMC3226854, DOI: 10.1016/j.taap.2011.09.017.Peer-Reviewed Original ResearchConceptsHigh-fat dietExcessive weight gainInsulin resistanceWeight gainFatty liverBasal metabolic rateGlutamate-cysteine ligase modifier subunit geneDecreased respiratory quotientExcess body weightIntestinal lipid absorptionHepatic oxidative stress responseDietary energy consumptionWild-type controlsGlucose intoleranceOxidative stress responseFat dietNormal dietRisk factorsBody compositionBody weightMetabolic rateDietary lipidsLipid absorptionMetabolic diseasesExperimental animals
2010
Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis
Chen Y, Johansson E, Yang Y, Miller ML, Shen D, Orlicky DJ, Shertzer HG, Vasiliou V, Nebert DW, Dalton TP. Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis. Journal Of Hepatology 2010, 53: 1085-1094. PMID: 20810184, PMCID: PMC2970663, DOI: 10.1016/j.jhep.2010.05.028.Peer-Reviewed Original ResearchAcetylcysteineAdministration, OralAnimalsAntioxidantsBase SequenceCytokinesDisease Models, AnimalDNA PrimersGene Expression ProfilingGlutamate-Cysteine LigaseGlutathioneHepatocytesLiverLiver CirrhosisMiceMice, KnockoutMicroscopy, Electron, TransmissionMitochondria, LiverOxidative StressRNA, Messenger
2007
Hepatocyte‐specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure
Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP. Hepatocyte‐specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 2007, 45: 1118-1128. PMID: 17464988, DOI: 10.1002/hep.21635.Peer-Reviewed Original ResearchConceptsLiver failureMitochondrial injuryLiver biochemistry testsSevere parenchymal damageNumerous liver diseasesMonths of ageGCLC geneHepatic failureLiver injuryParenchymal damageLiver diseaseDepletion of glutathioneHepatic steatosisHistological featuresGSH synthesisHepatic functionPostnatal dayHepatocyte deathKnockout miceRapid onsetBiochemistry testsHepatic GSHSteatosisUltrastructural examinationOxidative stress
2006
TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F0F1-ATP synthase and ubiquinone
Shertzer HG, Genter MB, Shen D, Nebert DW, Chen Y, Dalton TP. TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F0F1-ATP synthase and ubiquinone. Toxicology And Applied Pharmacology 2006, 217: 363-374. PMID: 17109908, PMCID: PMC1783833, DOI: 10.1016/j.taap.2006.09.014.Peer-Reviewed Original ResearchConceptsReactive oxygen productionATP levelsMitochondria generate ATPMitochondrial glutathione redox stateMitochondrial oxidative DNA damageF0F1-ATP synthaseATP/O ratioGlutathione redox stateOxygen productionATP synthaseGenerate ATPSignal transductionMitochondrial targetsOxidative DNA damageGreater respiratory rateOxidoreductase activityATP synthesisCell deathDNA damageFutile cycleRedox stateCellular pathologyRespiratory control ratioTCDD treatmentATP