2019
Hepatic metabolic adaptation in a murine model of glutathione deficiency
Chen Y, Golla S, Garcia-Milian R, Thompson DC, Gonzalez FJ, Vasiliou V. Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chemico-Biological Interactions 2019, 303: 1-6. PMID: 30794799, PMCID: PMC6743730, DOI: 10.1016/j.cbi.2019.02.015.Peer-Reviewed Original ResearchConceptsCellular non-protein thiolsMetabolic adaptationGlutamate-cysteine ligase modifier subunitNon-protein thiolsHepatic metabolic adaptationCellular redoxGlobal profilingGSH homeostasisModifier subunitLiver developmentBiochemical mechanismsMetabolic homeostasisAmino acidsGclm null miceDefense mechanismsEnvironmental insultsOxidative damageFatty liver developmentNull miceSpectrum of changesNucleic acidsMetabolic signaturesPivotal roleHomeostasisGlutathione deficiency
2018
Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation
Lian G, Gnanaprakasam JR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TW, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife 2018, 7: e36158. PMID: 30198844, PMCID: PMC6152796, DOI: 10.7554/elife.36158.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell ProliferationDimethyl FumarateGlutamate-Cysteine LigaseGlutamineGlutathioneGlutathione DisulfideHomeostasisLymphocyte ActivationMice, Inbred C57BLOxidation-ReductionOxidative StressReactive Oxygen SpeciesReceptors, Antigen, T-CellTh17 CellsT-LymphocytesT-Lymphocytes, RegulatoryConceptsCell fateDe novo synthesisNovo synthesisCell differentiationT cell differentiationMurine T cell differentiationT cell fateGlutamate-cysteine ligaseLineage choiceRedox demandsGlutathione de novo synthesisRecycling pathwayInhibition of GSHRedox homeostasisGSH biosynthesisGlutamine catabolismRedox balanceModifier subunitEssential precursorIntracellular GSHEssential roleGlutathione disulfideDifferentiationGSH contentGSH
2013
Glutathione defense mechanism in liver injury: Insights from animal models
Chen Y, Dong H, Thompson DC, Shertzer HG, Nebert DW, Vasiliou V. Glutathione defense mechanism in liver injury: Insights from animal models. Food And Chemical Toxicology 2013, 60: 38-44. PMID: 23856494, PMCID: PMC3801188, DOI: 10.1016/j.fct.2013.07.008.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsLiver injuryGlutamate-cysteine ligaseMouse modelLiver disease processTransgenic mouse modelCellular GSH concentrationGSH homeostasisLiver diseaseClinical stageHepatic insultLiver pathologyDisease processRate-limiting enzymeAnimal modelsHepatic GSHHepatic responseModifier subunitGenetic deficiencyInjuryPathophysiological functionsGSH deficitThiol antioxidantGSH concentrationMiceRole of GSH
2010
Glutathione deficient C57BL/6J mice are not sensitized to ozone-induced lung injury
Johansson E, Wesselkamper SC, Shertzer HG, Leikauf GD, Dalton TP, Chen Y. Glutathione deficient C57BL/6J mice are not sensitized to ozone-induced lung injury. Biochemical And Biophysical Research Communications 2010, 396: 407-412. PMID: 20417186, PMCID: PMC2892220, DOI: 10.1016/j.bbrc.2010.04.105.Peer-Reviewed Original ResearchConceptsOzone-induced lung injuryGlutamate-cysteine ligase modifier subunitLung injuryLung hyperpermeabilityDegree of neutrophiliaBronchoalveolar lavage fluidWild-type miceInflammatory gene expressionPulmonary susceptibilityLavage fluidCompensatory augmentationKnockout miceTotal protein concentrationPpm ozoneMiceModifier subunitMRNA levelsAntioxidant defenseMember 2Antioxidant glutathioneMetallothionein-1GSH depletionHyperpermeabilityInjuryAntioxidant response
2009
Early onset senescence occurs when fibroblasts lack the glutamate–cysteine ligase modifier subunit
Chen Y, Johansson E, Fan Y, Shertzer HG, Vasiliou V, Nebert DW, Dalton TP. Early onset senescence occurs when fibroblasts lack the glutamate–cysteine ligase modifier subunit. Free Radical Biology And Medicine 2009, 47: 410-418. PMID: 19427898, PMCID: PMC2773044, DOI: 10.1016/j.freeradbiomed.2009.05.003.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAnimalsBeta-GalactosidaseCell Culture TechniquesCell CycleCell Growth ProcessesCellular SenescenceCyclin-Dependent Kinase Inhibitor p21DNA DamageFemaleFetusFibroblastsFree Radical ScavengersGlutamate-Cysteine LigaseGlutathioneMiceMice, Inbred C57BLMice, KnockoutPregnancyProtein SubunitsReactive Oxygen SpeciesTumor Suppressor Protein p53ConceptsGlutamate-cysteine ligasePremature senescenceCellular redox environmentCellular antioxidant glutathionePrimary murine fibroblastsSenescence-associated beta-galactosidase activityCell cycle arrestInduction of p53Beta-galactosidase activityPrevents premature senescenceCatalytic subunitCellular senescenceGrowth arrestGlutamate cysteine ligase modifierModifier subunitP21 proteinPhysiological roleSenescenceDNA damageRedox environmentCycle arrestMurine fibroblastsGSH synthesisN-acetylcysteine increasesPrimary cellsCurcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit
Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, Q. K. Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. Journal Of Neurochemistry 2009, 108: 1410-1422. PMID: 19183254, DOI: 10.1111/j.1471-4159.2009.05908.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAntioxidantsAstrocytesCell SurvivalCells, CulturedCerebral CortexCurcuminDose-Response Relationship, DrugEmbryo, MammalianEnzyme InhibitorsGene ExpressionGlutamate-Cysteine LigaseGlutathioneHydroquinonesMiceMice, Inbred C57BLMice, KnockoutNeuronsProtein SubunitsQuercetinUp-RegulationConceptsGlutamate-cysteine ligaseGCL activityRate-limiting synthesizing enzymeRedox regulatorCatalytic subunitGSH levelsGene expressionCysteine ligaseGlutamate cysteine ligase modifierModifier subunitCell deathCell typesGSH synthesisEnzymeNeurodegenerative diseasesCultured neuronsGCLMSubunitsMRNA levelsSynthesizing enzymesGSHLower GSHAbility of curcuminExpressionLigase
2007
Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase
Yang Y, Chen Y, Johansson E, Schneider SN, Shertzer HG, Nebert DW, Dalton TP. Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase. Biochemical Pharmacology 2007, 74: 372-381. PMID: 17517378, DOI: 10.1016/j.bcp.2007.02.003.Peer-Reviewed Original ResearchConceptsGlutamate-cysteine ligaseHeterodimer formationEnzyme structure-function relationshipsTwo-hybrid systemGlutathione biosynthesis pathwayPrimary amino acid sequenceC-terminal regionAmino acid sequenceN-terminal regionStructure-function relationshipsBiosynthesis pathwayRegulatory subunitCatalytic subunitDeletion analysisRate-limiting enzymeTertiary structureModifier subunitAmino acidsPoint mutationsSubunitsGCLCGSH inhibitionLigaseEnzyme activityGCLM
2005
Butylhydroquinone Protects Cells Genetically Deficient in Glutathione Biosynthesis from Arsenite-Induced Apoptosis Without Significantly Changing Their Prooxidant Status
Kann S, Estes C, Reichard JF, Huang MY, Sartor MA, Schwemberger S, Chen Y, Dalton TP, Shertzer HG, Xia Y, Puga A. Butylhydroquinone Protects Cells Genetically Deficient in Glutathione Biosynthesis from Arsenite-Induced Apoptosis Without Significantly Changing Their Prooxidant Status. Toxicological Sciences 2005, 87: 365-384. PMID: 16014739, DOI: 10.1093/toxsci/kfi253.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisArsenitesBlotting, WesternCell SurvivalCells, CulturedDNA, ComplementaryElectrophoretic Mobility Shift AssayFibroblastsGene Expression RegulationGlutamate-Cysteine LigaseGlutathioneHydroquinonesMiceMice, KnockoutNF-kappa BOligonucleotide Array Sequence AnalysisOxidantsOxidative StressRNATetrazolium SaltsThiazolesConceptsMouse embryo fibroblastsGlutathione biosynthesisGlobal gene expression profilesAntioxidant responseCell cycle regulationArsenite-induced apoptosisEffective antioxidant responseArsenic-induced apoptosisGene expression profilesExpression of genesGlutamate-cysteine ligaseOxidative stressProtein biosynthesisRole of glutathioneCycle regulationRate-limiting enzymeGene deregulationExpression profilesArsenic-induced oxidative stressEmbryo fibroblastsInduces oxidative stressModifier subunitApoptotic deathDNA damageToxicity of arsenic
2002
Initial Characterization of the Glutamate-Cysteine Ligase Modifier Subunit Gclm(−/−) Knockout Mouse NOVEL MODEL SYSTEM FOR A SEVERELY COMPROMISED OXIDATIVE STRESS RESPONSE*
Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP. Initial Characterization of the Glutamate-Cysteine Ligase Modifier Subunit Gclm(−/−) Knockout Mouse NOVEL MODEL SYSTEM FOR A SEVERELY COMPROMISED OXIDATIVE STRESS RESPONSE*. Journal Of Biological Chemistry 2002, 277: 49446-49452. PMID: 12384496, DOI: 10.1074/jbc.m209372200.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAllelesAnimalsBlotting, NorthernBlotting, SouthernBody WeightCell DeathChromatography, GelCysteineDose-Response Relationship, DrugFibroblastsGenotypeGlutamate-Cysteine LigaseGlutamic AcidGlutathioneHomozygoteHydrogen PeroxideImmunoblottingKidneyKineticsLiverMiceMice, KnockoutModels, GeneticMutagenesis, Site-DirectedOxidative StressOxygenPhenotypePolymerase Chain ReactionProtein Structure, TertiaryTime FactorsTissue DistributionConceptsGlutamate-cysteine ligaseModifier subunitGSH biosynthesis pathwayGlutamate-cysteine ligase modifier subunitOxidative stress responseGCL holoenzymeHigher eukaryotesBiosynthesis pathwayCellular functionsCatalytic subunitNovel model systemRate-limiting enzymeNumerous pathophysiological conditionsNull allelesStress responseOvert phenotypeGCL activityOxidant insultSubunitsFetal fibroblastsChronic GSH depletionInitial characterizationHoloenzymeGSH inhibitionGSH depletion