Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment
Sun F, Wang H, Wu J, Quraishi I, Zhang Y, Pedram M, Gao B, Jonas E, Nguyen V, Wu S, Mabrouk O, Jafar-nejad P, Kaczmarek L. Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment. Biomolecules 2024, 14: 1397. PMID: 39595574, PMCID: PMC11591899, DOI: 10.3390/biom14111397.Peer-Reviewed Original ResearchWild-type miceKO miceSpectrum of epilepsy syndromesAntisense oligonucleotidesGain-of-function variantsAntisense oligonucleotide treatmentEpileptic phenotypePotassium channelsKCNT1Molecular profilingOligonucleotide treatmentAnimal modelsEpilepsy syndromesC-terminal mutationsIncreased expressionCerebral cortexMiceExpression of multiple proteinsComprehensive proteomic analysisDisease modelsCortical mitochondriaMolecular differencesDensity of mitochondrial cristaeMitochondrial membraneTreatmentDisease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons
Wu J, Quraishi I, Zhang Y, Bromwich M, Kaczmarek L. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Cell Reports 2024, 43: 113904. PMID: 38457342, PMCID: PMC11013952, DOI: 10.1016/j.celrep.2024.113904.Peer-Reviewed Original ResearchInhibitory neuronsRegulation of neuronal excitabilityPotassium channel mutationsVoltage-dependent sodiumInhibitory cortical neuronsGain-of-function mutationsAxon initial segmentKCNT1 geneNeuronal excitabilityChannel subunitsChannel mutationsNetwork hyperexcitabilityMouse modelNeuron typesCortical neuronsTreat epilepsyNeuronsExcitable neuronsNeurological disordersSevere intellectual disabilityMutationsInitial segmentKCNT1ExpressionHyperexcitability