2019
Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation
Ramírez CM, Zhang X, Bandyopadhyay C, Rotllan N, Sugiyama MG, Aryal B, Liu X, He S, Kraehling JR, Ulrich V, Lin CS, Velazquez H, Lasunción MA, Li G, Suárez Y, Tellides G, Swirski FK, Lee WL, Schwartz MA, Sessa WC, Fernández-Hernando C. Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation 2019, 140: 225-239. PMID: 31154825, PMCID: PMC6778687, DOI: 10.1161/circulationaha.118.038571.Peer-Reviewed Original ResearchConceptsEndothelial nitric oxide synthaseDiet-induced atherosclerosisNO productionVascular inflammationENOS activationEndothelial nitric oxide synthase activationNitric oxide synthase activationAthero-protective functionsLipid metabolic factorsEndothelial cell inflammationNitric oxide synthaseWild-type miceMice Lacking ExpressionProduction of NOExtracellular matrix remodelingInflammatory primingHyperlipidemic miceInflammatory pathwaysAortic archCell inflammationOxide synthaseMetabolic factorsMouse modelAtherosclerosisInflammation
2018
Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance
Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, Diaz-Ruiz A, Araldi E, Baldán Á, Camporez JP, Suárez Y, Rodeheffer MS, Shulman GI, de Cabo R, Fernández-Hernando C. Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Reports 2018, 22: 2133-2145. PMID: 29466739, PMCID: PMC5860817, DOI: 10.1016/j.celrep.2018.01.074.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAdiposityAnimalsCholesterol, HDLCholesterol, LDLEatingEnzyme ActivationGene DeletionGene Expression RegulationGenetic Predisposition to DiseaseGerm CellsInflammation MediatorsInsulin ResistanceLipid MetabolismLiverMice, Inbred C57BLMicroRNAsModels, BiologicalObesityProtein Kinase C-epsilonSterol Regulatory Element Binding Protein 1ConceptsMiR-33Insulin resistanceFood intakeIncreases food intakeAdipose tissue expansionKey metabolic tissuesWild-type animalsPromotes obesityImpaired lipolysisPair feedingCardiovascular diseaseMetabolic dysfunctionTherapeutic modulationAdipose tissueLipid uptakeMiRNA-based therapiesMetabolic tissuesGenetic ablationTissue expansionMiceObesityTherapyDeleterious effectsDiseasePrevious reports
2006
Plitidepsin Cellular Binding and Rac1/JNK Pathway Activation Depend on Membrane Cholesterol Content
Suárez Y, González-Santiago L, Zarich N, Dávalos A, Aranda JF, Alonso MA, Lasunción MA, Rojas JM, Muñoz A. Plitidepsin Cellular Binding and Rac1/JNK Pathway Activation Depend on Membrane Cholesterol Content. Molecular Pharmacology 2006, 70: 1654-1663. PMID: 16928956, DOI: 10.1124/mol.106.025569.Peer-Reviewed Original ResearchConceptsJun N-terminal kinaseMembrane cholesterol contentRac1-JNK pathwayHeLa cellsWild-type HeLa cellsMembrane-bound Rac1Plasma membrane cholesterolRac1 small GTPaseN-terminal kinaseMKP-1 phosphataseJNK pathway activationCellular bindingMDA-MB-231 breast cancer cellsInduction of apoptosisSmall GTPaseMarine cyclic depsipeptidePlasma membraneJNK activationRac1 activationMembrane cholesterolCell deathSubcellular fractioningBreast cancer cellsSustained activationRac1Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation
González-Santiago L, Suárez Y, Zarich N, Muñoz-Alonso M, Cuadrado A, Martínez T, Goya L, Iradi A, Sáez-Tormo G, Maier J, Moorthy A, Cato A, Rojas J, Muñoz A. Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death & Differentiation 2006, 13: 1968-1981. PMID: 16543941, DOI: 10.1038/sj.cdd.4401898.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsApoptosisBreast NeoplasmsCalciumCell Cycle ProteinsCopperDepsipeptidesDown-RegulationDual Specificity Phosphatase 1Enzyme ActivationGlutathione DisulfideGlutathione PeroxidaseGlutathione ReductaseHeLa CellsHomeostasisHumansImmediate-Early ProteinsJNK Mitogen-Activated Protein KinasesMembrane PotentialsMiceMitochondrial MembranesOxidative StressPeptides, CyclicPhosphoprotein PhosphatasesProtein Phosphatase 1Protein Tyrosine PhosphatasesRac1 GTP-Binding ProteinReactive Oxygen SpeciesConceptsJun N-terminal kinaseJNK activationRac1 activationGlutathione homeostasisRac1 small GTPaseJNK-dependent apoptosisRac1 GTPase activationMitochondrial membrane potentialN-terminal kinaseMKP-1 phosphataseSmall GTPaseGTPase activationReactive oxygen speciesHuman breast cancer cellsGSSG/GSH ratioCell deathBreast cancer cellsRapid activationExogenous GSHRNA duplexesSustained activationGSH synthesisSpecific Rac1 inhibitorAplidinDownregulation of Rac1
2005
Lovastatin-induced PC-12 cell differentiation is associated with RhoA/RhoA kinase pathway inactivation
Fernández-Hernando C, Suárez Y, Lasunción MA. Lovastatin-induced PC-12 cell differentiation is associated with RhoA/RhoA kinase pathway inactivation. Molecular And Cellular Neuroscience 2005, 29: 591-602. PMID: 15951198, DOI: 10.1016/j.mcn.2005.04.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCholesterolDiterpenesEnzyme ActivationEnzyme InhibitorsHydroxymethylglutaryl-CoA Reductase InhibitorsIntracellular Signaling Peptides and ProteinsLovastatinNeuritesPC12 CellsPhosphorylationProtein PrenylationProtein Serine-Threonine KinasesRatsRhoA GTP-Binding ProteinRho-Associated KinasesSterolsTerpenesConceptsNeurite outgrowthNon-sterol mevalonate derivativesPC-12 cell differentiationCellular lipid compositionNon-sterol isoprenoidsEffects of geranylgeraniolBiosynthetic pathwayProtein prenylationRole of cholesterolCofilin phosphorylationRhoA signalingMevalonate derivativesA ReductaseRhoA activationCell differentiationCoenzyme A (HMG-CoA) reductaseLovastatin inhibitsPC-12 cellsCholesterol biosynthesisPathway inactivationRhoA kinaseLipid compositionOutgrowthGeranylgeraniolInhibition
2004
JNK activation is critical for Aplidin™-induced apoptosis
Cuadrado A, González L, Suárez Y, Martínez T, Muñoz A. JNK activation is critical for Aplidin™-induced apoptosis. Oncogene 2004, 23: 4673-4680. PMID: 15122339, DOI: 10.1038/sj.onc.1207636.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAntineoplastic AgentsApoptosisBlotting, WesternBreast NeoplasmsCell DivisionCell Line, TumorCell SurvivalDepsipeptidesEnzyme ActivationFemaleFibroblastsHumansMitogen-Activated Protein KinasesNF-kappa BPeptides, CyclicPhosphorylationPrecipitin TestsProto-Oncogene Proteins c-junTranscription Factor AP-1
2002
AplidinTM Induces Apoptosis in Human Cancer Cells via Glutathione Depletion and Sustained Activation of the Epidermal Growth Factor Receptor, Src, JNK, and p38 MAPK*
Cuadrado A, Garcı́a-Fernández L, González L, Suárez Y, Losada A, Alcaide V, Martı́nez T, Fernández-Sousa J, Sánchez-Puelles J, Muñoz A. AplidinTM Induces Apoptosis in Human Cancer Cells via Glutathione Depletion and Sustained Activation of the Epidermal Growth Factor Receptor, Src, JNK, and p38 MAPK*. Journal Of Biological Chemistry 2002, 278: 241-250. PMID: 12414812, DOI: 10.1074/jbc.m201010200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsApoptosisBreast NeoplasmsCell DivisionCell SurvivalCells, CulturedDepsipeptidesEnzyme ActivationEnzyme InhibitorsErbB ReceptorsFemaleFibroblastsFlow CytometryGlutathioneHumansJNK Mitogen-Activated Protein KinasesKidney NeoplasmsMiceMitogen-Activated Protein KinasesP38 Mitogen-Activated Protein KinasesPeptides, CyclicPhosphorylationProto-Oncogene Proteins pp60(c-src)Receptors, Platelet-Derived Growth FactorTumor Cells, CulturedConceptsEpidermal growth factor receptorP38 MAPK activationP38 MAPKNon-receptor protein tyrosine kinase SrcGrowth factor receptorMAPK activationProtein tyrosine kinase SrcStress response programSustained activationFactor receptorCancer cellsMDA-MB-231 breast cancer cellsHuman cancer cellsBenzyloxycarbonyl-VADKinase SrcHuman MDA-MB-231 breast cancer cellsMDA-MB-231 cellsMolecular basisKinase JNKPretreatment of cellsMouse embryosEGFR activationFluoromethyl ketoneGrowth arrestHuman renal cancerDifferential effects of ergosterol and cholesterol on Cdk1 activation and SRE‐driven transcription
Suárez Y, Fernández C, Ledo B, Ferruelo AJ, Martín M, Vega MA, Gómez‐Coronado D, Lasunción MA. Differential effects of ergosterol and cholesterol on Cdk1 activation and SRE‐driven transcription. The FEBS Journal 2002, 269: 1761-1771. PMID: 11895447, DOI: 10.1046/j.1432-1327.2002.02822.x.Peer-Reviewed Original ResearchConceptsHuman cellsCdk1 activationCell cycle machineryCell membrane formationCell cycle progressionCholesterol-free mediumCell cycle arrestG2/M phaseSpecific regulatorsCycle machineryGene constructsYeast sterolCycle progressionCell cycleCell proliferation inhibitionCycle arrestAction of cholesterolUCN-01Cell growthCyclin B1 expressionSKF 104976Cholesterol homeostasisM phaseMembrane formationCell proliferation