2020
Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis
Zhang X, Ramírez CM, Aryal B, Madrigal-Matute J, Liu X, Diaz A, Torrecilla-Parra M, Suárez Y, Cuervo AM, Sessa WC, Fernández-Hernando C. Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 1510-1522. PMID: 32349535, PMCID: PMC7253189, DOI: 10.1161/atvbaha.120.314291.Peer-Reviewed Original ResearchConceptsCav-1 deficiencyCav-1-deficient miceCav-1Autophagic fluxCholesterol-rich membrane domainsCav-1 interactsATG5-ATG12 complexEndothelial Cav-1 expressionRegulation of autophagyNovel molecular mechanismExtracellular matrix remodelingAutophagosome componentsMembrane domainsLipid raftsAutophagosome formationPlasma membraneCav-1 expressionMolecular mechanismsLDL transcytosisCellular localizationImportant regulatorAutophagyAutophagy contributesRelevant regulatorMatrix remodeling
2019
Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation
Ramírez CM, Zhang X, Bandyopadhyay C, Rotllan N, Sugiyama MG, Aryal B, Liu X, He S, Kraehling JR, Ulrich V, Lin CS, Velazquez H, Lasunción MA, Li G, Suárez Y, Tellides G, Swirski FK, Lee WL, Schwartz MA, Sessa WC, Fernández-Hernando C. Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation 2019, 140: 225-239. PMID: 31154825, PMCID: PMC6778687, DOI: 10.1161/circulationaha.118.038571.Peer-Reviewed Original ResearchConceptsEndothelial nitric oxide synthaseDiet-induced atherosclerosisNO productionVascular inflammationENOS activationEndothelial nitric oxide synthase activationNitric oxide synthase activationAthero-protective functionsLipid metabolic factorsEndothelial cell inflammationNitric oxide synthaseWild-type miceMice Lacking ExpressionProduction of NOExtracellular matrix remodelingInflammatory primingHyperlipidemic miceInflammatory pathwaysAortic archCell inflammationOxide synthaseMetabolic factorsMouse modelAtherosclerosisInflammation
2018
MicroRNAs in endothelial cell homeostasis and vascular disease
Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Current Opinion In Hematology 2018, 25: 227-236. PMID: 29547400, PMCID: PMC6175704, DOI: 10.1097/moh.0000000000000424.Peer-Reviewed Original ResearchConceptsVascular diseaseVascular disease preventionPotential therapeutic targetEndothelial cell homeostasisEndothelial cell functionEndothelial dysfunctionEndothelial functionVascular dysfunctionTherapeutic applicationsPotential therapeutic applicationsInvolvement of miRNAsDysregulation of miRNAsEndothelial homeostasisTherapeutic targetDisease preventionDiseaseCell functionRegulatory circuitsCritical modulatorUnanticipated roleTarget genesCell homeostasisDysfunctionMiRNAsHomeostasis
2016
MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases
Araldi E, Suárez Y. MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases. Biochimica Et Biophysica Acta 2016, 1861: 2094-2103. PMID: 26825686, PMCID: PMC5039046, DOI: 10.1016/j.bbalip.2016.01.013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEndothelial CellsEndothelium, VascularHeart DiseasesHumansLipid MetabolismMetabolic DiseasesMicroRNAsConceptsSmall non-coding RNAsLipid/energy metabolismCarlos Fernández-HernandoRegulation of ECNon-coding RNAsRole of miRNAsEndothelial cellsYajaira SuárezTissue homeostasisCell deathEndothelial cell functionEnvironmental stimuliEnergy metabolismMicroRNAsCell proliferationImportant functionsPotential therapeutic applicationsCell functionMiRNAsDifferent cardiometabolic diseasesMetabolic imbalanceEC dysfunctionTherapeutic applicationsPresent reviewRelated diseases
2015
VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis
Chamorro-Jorganes A, Lee MY, Araldi E, Landskroner-Eiger S, Fernández-Fuertes M, Sahraei M, del Rey M, van Solingen C, Yu J, Fernández-Hernando C, Sessa WC, Suárez Y. VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circulation Research 2015, 118: 38-47. PMID: 26472816, PMCID: PMC4703066, DOI: 10.1161/circresaha.115.307408.Peer-Reviewed Original ResearchConceptsMiR-17Elk1 activationEndothelial angiogenic functionEC proliferationRegulation of angiogenesisTranscription activationTranscriptional programsGenetic evidenceCluster expressionTumor angiogenesisAngiogenic sproutingVEGF stimulationRescue experimentsRetinal angiogenesisRegulate angiogenesisLines of evidenceEndothelial cell functionAngiogenic switchPhysiological retinal angiogenesisAngiogenic functionDevelopmental retinal angiogenesisCell functionTumor developmentRegulationCrucial mediator
2013
MicroRNAs as pharmacological targets in endothelial cell function and dysfunction
Chamorro-Jorganes A, Araldi E, Suárez Y. MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacological Research 2013, 75: 15-27. PMID: 23603154, PMCID: PMC3752325, DOI: 10.1016/j.phrs.2013.04.002.Peer-Reviewed Original ResearchConceptsEndothelial cell functionShort non-coding RNAsCell functionPost-transcriptional levelNon-coding RNAsEndothelial-specific microRNAsGene expressionMorphogenic capacityCritical regulatorNormal endothelial cell functionMicroRNAsCell dysfunctionEndothelial cell dysfunctionPathophysiological conditionsLatest insightsParacrine mannerPharmacological targetsEndothelial cellsTherapeutic potentialBarrier functionTraffickingRNALeukocyte traffickingRegulatorTarget
2011
MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1
Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernández-Hernando C, Suárez Y. MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1. Arteriosclerosis Thrombosis And Vascular Biology 2011, 31: 2595-2606. PMID: 21885851, PMCID: PMC3226744, DOI: 10.1161/atvbaha.111.236521.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAnimalsCattleCell MovementCell ProliferationCells, CulturedEndothelium, VascularHumansMiceMice, SCIDMicroRNAsNeovascularization, PhysiologicReceptor, Fibroblast Growth Factor, Type 1Signal TransductionVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsVEGF receptor 2MiR-424 overexpressionPosttranscriptional regulationGrowth factor receptor 1MiR-424Factor receptor 1MiR-16Vascular endothelial growth factorFibroblast growth factor receptor 1Endothelial cellsMature miR-16Basic fibroblast growth factor (bFGF) treatmentFibroblast growth factor treatmentGrowth factorCellular processesBioinformatics approachPrimary transcriptAbility of ECsDownstream componentsTarget genesVascular endothelial growth factor receptor 2Receptor 1Endothelial growth factor receptor 2Cord formationLentiviral overexpression
2009
Genetic Evidence Supporting a Critical Role of Endothelial Caveolin-1 during the Progression of Atherosclerosis
Fernández-Hernando C, Yu J, Suárez Y, Rahner C, Dávalos A, Lasunción MA, Sessa WC. Genetic Evidence Supporting a Critical Role of Endothelial Caveolin-1 during the Progression of Atherosclerosis. Cell Metabolism 2009, 10: 48-54. PMID: 19583953, PMCID: PMC2735117, DOI: 10.1016/j.cmet.2009.06.003.Peer-Reviewed Original ResearchConceptsProgression of atherosclerosisInitiation of atherosclerosisCav-1ApoE knockout backgroundArtery wallKnockout backgroundLeukocyte adhesion moleculesNitric oxide productionEndothelial Cav-1 expressionCav-1 expressionEndothelial caveolin-1AtherosclerosisTransgenic miceOxide productionGenetic ablationLDL infiltrationAdhesion moleculesCritical roleCaveolin-1 geneLDL-derived cholesterolMiceVessel wallPhysiological evidenceLesion expansionGenetic evidence
2008
Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence
Schleicher M, Shepherd BR, Suarez Y, Fernandez-Hernando C, Yu J, Pan Y, Acevedo LM, Shadel GS, Sessa WC. Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. Journal Of Cell Biology 2008, 180: 101-112. PMID: 18195103, PMCID: PMC2213620, DOI: 10.1083/jcb.200706072.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCells, CulturedCellular SenescenceCytoskeletonElectron Transport Complex IEndothelial CellsEndothelium, VascularHumansMiceMice, Inbred StrainsMitochondriaMitochondrial MembranesNeovascularization, PhysiologicNeuropeptidesPhosphatidylinositol 3-KinasesProhibitinsProto-Oncogene Proteins c-aktRac GTP-Binding ProteinsRac1 GTP-Binding ProteinReactive Oxygen SpeciesRepressor ProteinsSignal TransductionConceptsProhibitin 1Mitochondrial functionKnockdown of PHB1Inner mitochondrial membraneEndothelial cell motilityEndothelial cellsCytoskeletal rearrangementsMitochondrial membraneVivo angiogenesis assaysCell motilityAngiogenic capacityCellular senescenceReactive oxygen speciesMitochondrial productionFunctional blood vesselsImportant regulatorSenescenceAngiogenesis assayTube formationOxygen speciesVascular homeostasisCellsVascular systemRac1Yeast
2006
Vascularization and engraftment of a human skin substitute using circulating progenitor cell‐derived endothelial cells
Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS, Shepherd B, Enis D, Wang F, Suarez Y, Pober J, Scheduier J. Vascularization and engraftment of a human skin substitute using circulating progenitor cell‐derived endothelial cells. The FASEB Journal 2006, 20: 1739-1741. PMID: 16807367, DOI: 10.1096/fj.05-5682fje.Peer-Reviewed Original Research