2024
Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization
Liu X, Marin T, Eslahi S, Tiss A, Chemli Y, Johson K, Fakhri G, Ouyang J. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. 2011 IEEE Nuclear Science Symposium Conference Record 2024, 00: 1-1. PMID: 39445307, PMCID: PMC11497478, DOI: 10.1109/nss/mic/rtsd57108.2024.10656150.Peer-Reviewed Original ResearchDomain generalizationDenoising performanceDenoising moduleDeep learningSubject-independent mannerSubject-invariant featuresSuperior denoising performanceAdversarial learning frameworkSubject-related informationConventional UNetBottleneck featuresTrustworthy systemsLearning frameworkDL modelsDL model performanceDenoisingNoise realizationsNegative samplesList-mode dataImage volumesModel performancePerformancePerformance of positron emission tomographyUNetFraction of eventsCross noise level PET denoising with continuous adversarial domain generalization
Liu X, Eslahi S, Marin T, Tiss A, Chemli Y, Huang Y, Johnson K, Fakhri G, Ouyang J. Cross noise level PET denoising with continuous adversarial domain generalization. Physics In Medicine And Biology 2024, 69: 085001. PMID: 38484401, PMCID: PMC11195012, DOI: 10.1088/1361-6560/ad341a.Peer-Reviewed Original ResearchDomain generalization techniqueDomain generalizationDenoising performanceSuperior denoising performanceLatent feature representationGeneral techniqueDistribution shiftsAdversarial trainingDenoised imageFeature representationDomain labelsDistribution divergenceNoise levelDeep learningImage spaceDenoisingPerformance degradationCore ideaNoise realizationsCD methodNoiseImage volumesPerformanceImagesPSNR
2023
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI
Liu X, Shih H, Xing F, Santarnecchi E, El Fakhri G, Woo J. Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI. Lecture Notes In Computer Science 2023, 14221: 46-56. PMID: 38665992, PMCID: PMC11045038, DOI: 10.1007/978-3-031-43895-0_5.Peer-Reviewed Original ResearchDeep learningDL modelsBrain tumor segmentation taskAbsence of training dataIncremental learning settingSegmenting various anatomical structuresBig medical dataInitial model trainingTumor segmentation taskBatch renormalizationCatastrophic forgettingIncremental learningSegmentation taskSource domainTraining dataModel trainingLearning structureSegmentation modelNetwork optimizationDiverse datasetsMedical dataEvolving environmentLearning settingsDistribution shiftsIncremental structureSuccessive Subspace Learning for Cardiac Disease Classification with Two-Phase Deformation Fields from Cine MRI
Liu X, Xing F, Gaggin H, Kuo C, El Fakhri G, Woo J. Successive Subspace Learning for Cardiac Disease Classification with Two-Phase Deformation Fields from Cine MRI. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2023, 00: 1-5. PMID: 38031559, PMCID: PMC10686280, DOI: 10.1109/isbi53787.2023.10230746.Peer-Reviewed Original ResearchTraining samplesCardiovascular disease classificationCNN-based approachDeep learning modelsCardiac disease classificationSubspace learningSSL modelClassification performanceDeep learningCardiac cine magnetic resonance imagingSubspace approximationSupervised regressionLearning modelsAccurate characterization resultsDisease classificationClassificationCardiac atlasLearningDeformation fieldEnd-systolic phaseFrameworkFeedforward designPerformanceTrainingSSLOutlier Robust Disease Classification via Stochastic Confidence Network
Lee K, Lee H, El Fakhri G, Sepulcre J, Liu X, Xing F, Hwang J, Woo J. Outlier Robust Disease Classification via Stochastic Confidence Network. Lecture Notes In Computer Science 2023, 14394: 80-90. DOI: 10.1007/978-3-031-47425-5_8.Peer-Reviewed Original ResearchDeep learningState-of-the-art modelsAccuracy of deep learningState-of-the-artMedical image dataMedical imaging modalitiesImage patchesIrrelevant patchesCategorical featuresPresence of outliersDL modelsConfidence networkConfidence predictionsClassifying outliersData samplesImage dataOutliersExperimental resultsDisease classificationImprove diagnostic performanceClassificationDiagnosing breast tumorsUltrasound imagingPerformanceImages
2022
Posterior estimation using deep learning: a simulation study of compartmental modeling in dynamic positron emission tomography
Liu X, Marin T, Amal T, Woo J, Fakhri G, Ouyang J. Posterior estimation using deep learning: a simulation study of compartmental modeling in dynamic positron emission tomography. Medical Physics 2022, 50: 1539-1548. PMID: 36331429, PMCID: PMC10087283, DOI: 10.1002/mp.16078.Peer-Reviewed Original ResearchConceptsConditional variational auto-encoderDeep learning approachNeural networkDeep learningMarkov chain Monte CarloVariational Bayesian inference frameworkLearning approachDeep learning-based approachVariational auto-encoderDeep neural networksLearning-based approachDynamic brain PET imagingPosterior distributionEstimate posterior distributionsBayesian inference frameworkAuto-encoderMedical imagesInference frameworkNetworkSimulation studyBrain PET imagingLearningPosterior estimatesInferior performanceImagesVoxelHop: Successive Subspace Learning for ALS Disease Classification Using Structural MRI
Liu X, Xing F, Yang C, Kuo C, Babu S, Fakhri G, Jenkins T, Woo J. VoxelHop: Successive Subspace Learning for ALS Disease Classification Using Structural MRI. IEEE Journal Of Biomedical And Health Informatics 2022, 26: 1128-1139. PMID: 34339378, PMCID: PMC8807766, DOI: 10.1109/jbhi.2021.3097735.Peer-Reviewed Original ResearchConceptsConvolutional neural networkLearning modelsDimension reductionSubspace learning modelConcatenation of featuresState-of-the-artUnsupervised dimension reductionDeep learning modelsMedical image dataSupervised dimension reductionImage dataClassification of amyotrophic lateral sclerosisSubspace learningClassification taskDeep learningDataset sizeNeural networkSubspace approximationMemory requirementsTraining datasetClassification approachAUC scoreAccurate classificationDatasetExperimental resultsDeep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives
Liu X, Yoo C, Xing F, Oh H, Fakhri G, Kang J, Woo J. Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives. APSIPA Transactions On Signal And Information Processing 2022, 11: e25. DOI: 10.1561/116.00000192.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domainLabeled source domain dataOut-of-distribution detectionUnlabeled target domain dataOut-of-distribution dataDomain dataTarget domain dataOut-of-distributionSource domain dataDeep neural networksNatural image processingMedical image analysisNatural language processingReal-world problemsDomain adaptationLabeled datasetSource domainDomain generalizationDeep learningNeural networkLanguage processingImpressive performanceTime series data analysisPerformance drop