2008
Regulation of Synaptic Efficacy in Hypocretin/Orexin-Containing Neurons by Melanin Concentrating Hormone in the Lateral Hypothalamus
Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB. Regulation of Synaptic Efficacy in Hypocretin/Orexin-Containing Neurons by Melanin Concentrating Hormone in the Lateral Hypothalamus. Journal Of Neuroscience 2008, 28: 9101-9110. PMID: 18784290, PMCID: PMC2562258, DOI: 10.1523/jneurosci.1766-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnalysis of VarianceAnimalsAnimals, NewbornBehavior, AnimalBenzazepinesBenzhydryl CompoundsCentral Nervous System StimulantsDopamine AgonistsDose-Response Relationship, DrugExcitatory Amino Acid AgentsGlutamic AcidGreen Fluorescent ProteinsHypothalamic Area, LateralHypothalamic HormonesIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsMelaninsMiceMice, Inbred C57BLMice, TransgenicModafinilMotor ActivityNeuronsNeuropeptidesOrexinsPertussis ToxinPituitary HormonesReceptors, SomatostatinSynapsesSynaptic TransmissionTime FactorsConceptsHypocretin/orexin neuronsMCHR1 KO miceOrexin-containing neuronsLateral hypothalamusWild-type miceOrexin neuronsHypocretin/orexinKO miceMCH receptor 1Action potential firingEffects of modafinilMelanin-Concentrating HormoneHypocretin/orexin signalingGroups of neuronsMCH neuronsMiniature EPSCsWT miceHypocretin/Glutamatergic synapsesOrexin signalingSynaptic transmissionPertussis toxinBrain areasReciprocal innervationInhibitory influence
2002
Melanin‐concentrating hormone depresses L‐, N‐, and P/Q‐type voltage‐dependent calcium channels in rat lateral hypothalamic neurons
Gao X, van den Pol A. Melanin‐concentrating hormone depresses L‐, N‐, and P/Q‐type voltage‐dependent calcium channels in rat lateral hypothalamic neurons. The Journal Of Physiology 2002, 542: 273-286. PMID: 12096069, PMCID: PMC2290404, DOI: 10.1113/jphysiol.2002.019372.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcium Channel BlockersCalcium Channels, L-TypeCalcium Channels, N-TypeCalcium Channels, P-TypeCells, CulturedFemaleGTP-Binding ProteinsHypothalamic HormonesHypothalamusImage Processing, Computer-AssistedIn Vitro TechniquesMelaninsMembrane PotentialsNeuronsPatch-Clamp TechniquesPituitary HormonesPregnancyRatsRats, Sprague-DawleySignal TransductionConceptsMelanin-concentrating hormoneLH neuronsCalcium currentNon-neuronal cellsHighest MCh concentrationMCH concentrationPertussis toxinCalcium channelsActions of MCHPTX-sensitive G protein pathwayRat lateral hypothalamic neuronsQ-type voltage-dependent calcium channelsVoltage-dependent calcium currentsQ-type calcium channelsVoltage-dependent calcium channelsInhibitory effectLateral hypothalamic neuronsLateral hypothalamic areaN-type currentWhole-cell recordingsVoltage-activated currentsG proteinsN-type channelsExcitatory actionHypothalamic areaHypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP‐expressing locus coeruleus
van den Pol A, Ghosh PK, Liu R, Li Y, Aghajanian GK, Gao X. Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP‐expressing locus coeruleus. The Journal Of Physiology 2002, 541: 169-185. PMID: 12015428, PMCID: PMC2290314, DOI: 10.1113/jphysiol.2002.017426.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCells, CulturedDose-Response Relationship, DrugElectrophysiologyFemaleGreen Fluorescent ProteinsImmunohistochemistryIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsLocus CoeruleusLuminescent ProteinsMembrane PotentialsMiceMice, TransgenicMicroscopy, ConfocalNeuronsNeuropeptidesNeurotransmitter AgentsOrexinsPatch-Clamp TechniquesPregnancyTyrosine 3-MonooxygenaseConceptsLocus coeruleusHypocretin-1Mouse prion promoterGlutamate receptor antagonistsPresence of TTXImmunoreactive tyrosine hydroxylaseRat locus coeruleusNeonatal mouse brainPostnatal day 0Higher brain centersNew transgenic mouseSingle-unit recordingsInward cation currentMembrane potentialDual cell recordingsImproved cognitive performanceNoradrenergic neuronsLC neuronsHypocretin neuronsImmature neuronsPrion promoterReceptor antagonistMouse slicesTyrosine hydroxylaseExcitatory mechanisms
2001
Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus
Gao X, van den Pol A. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. The Journal Of Physiology 2001, 533: 237-252. PMID: 11351031, PMCID: PMC2278620, DOI: 10.1111/j.1469-7793.2001.0237b.x.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerate6-Cyano-7-nitroquinoxaline-2,3-dioneAction PotentialsAnimalsBicucullineCarrier ProteinsCells, CulturedElectric ConductivityExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsFemaleFetusGABA AntagonistsGamma-Aminobutyric AcidGlutamic AcidGTP-Binding ProteinsHypothalamic Area, LateralHypothalamic HormonesIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsMelaninsNeuronsNeuropeptidesOrexin ReceptorsOrexinsPatch-Clamp TechniquesPituitary HormonesPotassiumPregnancyRatsRats, Sprague-DawleyReceptors, G-Protein-CoupledReceptors, GlutamateReceptors, NeuropeptideSodiumSynaptic TransmissionTetrodotoxinConceptsSynaptic activityLH neuronsAction potentialsPotassium channelsActions of MCHInhibitory synaptic eventsGABAB receptor agonistAmino acid transmittersLateral hypothalamic areaCalcium-dependent releasePresence of tetrodotoxinRat lateral hypothalamusEffect of MCHFast synaptic activityGlutamate-evoked currentsWhole-cell recordingsPostsynaptic glutamate receptorsNon-neuronal cellsMiniature excitatory currentsVoltage-dependent potassium channelsNeuropeptide melaninGABA neuronsVoltage-clamp experimentsExcitatory actionLH actionLateral hypothalamus: Early developmental expression and response to hypocretin (orexin)
Van Den Pol A, Patrylo P, Ghosh P, Gao X. Lateral hypothalamus: Early developmental expression and response to hypocretin (orexin). The Journal Of Comparative Neurology 2001, 433: 349-363. PMID: 11298360, DOI: 10.1002/cne.1144.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, NewbornBrainCalciumCarrier ProteinsCells, CulturedElectrophysiologyEmbryo, MammalianHypothalamic Area, LateralImmunohistochemistryIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsNeuronsNeuropeptidesOrexin ReceptorsOrexinsRatsRats, Sprague-DawleyReceptors, G-Protein-CoupledReceptors, NeuropeptideRNA, MessengerConceptsLateral hypothalamic areaSynaptic activityLH neuronsNeuronal activitySleep regulationWhole-cell patch-clamp recordingsRobust increaseAdult central nervous systemEndocrine controlPostnatal day 1Day of birthCentral nervous systemPatch-clamp recordingsVoltage-clamp recordingsEmbryonic day 19Hypocretin-1Excitatory influenceHypothalamic areaHypocretin-2Spinal cordMature brainFood intakeHypocretin systemLH cellsReceptor mRNAGABA, Not Glutamate, a Primary Transmitter Driving Action Potentials in Developing Hypothalamic Neurons
Gao X, Van Den Pol A. GABA, Not Glutamate, a Primary Transmitter Driving Action Potentials in Developing Hypothalamic Neurons. Journal Of Neurophysiology 2001, 85: 425-434. PMID: 11152743, DOI: 10.1152/jn.2001.85.1.425.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsBicucullineCells, CulturedChloridesExcitatory Amino Acid AntagonistsGABA-A Receptor AntagonistsGamma-Aminobutyric AcidGlutamic AcidGramicidinHypothalamusImmunohistochemistryIn Vitro TechniquesMiceNeuronsNeurotransmitter AgentsPatch-Clamp TechniquesReceptors, GlutamateSpinal CordConceptsHypothalamic neuronsReceptor antagonist bicucullinePrimary inhibitory neurotransmitterMouse hypothalamic neuronsPrimary excitatory transmitterAntagonist bicucullineExcitatory transmitterGABA circuitsGlutamate transmissionInhibitory neurotransmitterMature brainBrain slicesSynaptic releaseNeuronal activitySpike activityNeuronal connectionsSpike frequencyExtracellular recordingsAction potentialsAntagonist 2Brain developmentHebbian mechanismsIntracellular ClNeuronsGABA
1999
Kainate Acts at Presynaptic Receptors to Increase GABA Release From Hypothalamic Neurons
Liu Q, Patrylo P, Gao X, van den Pol A. Kainate Acts at Presynaptic Receptors to Increase GABA Release From Hypothalamic Neurons. Journal Of Neurophysiology 1999, 82: 1059-1062. PMID: 10444697, DOI: 10.1152/jn.1999.82.2.1059.Peer-Reviewed Original Research
1998
Glutamate Inhibits GABA Excitatory Activity in Developing Neurons
van den Pol A, Gao X, Patrylo P, Ghosh P, Obrietan K. Glutamate Inhibits GABA Excitatory Activity in Developing Neurons. Journal Of Neuroscience 1998, 18: 10749-10761. PMID: 9852609, PMCID: PMC6793361, DOI: 10.1523/jneurosci.18-24-10749.1998.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCalciumCells, CulturedCerebral CortexEmbryo, MammalianExcitatory Postsynaptic PotentialsGABA AntagonistsGamma-Aminobutyric AcidGene ExpressionGlutamic AcidGramicidinHypothalamusIn Vitro TechniquesNeuronsPatch-Clamp TechniquesPresynaptic TerminalsPropionatesRatsRats, Sprague-DawleyReceptors, Metabotropic GlutamateSpinal CordConceptsGroup III mGluRsExcitatory actionGABA activityGroup II metabotropic glutamate receptorsFura-2 digital imagingSynapse formationBrain developmentInhibitory roleAgonist L-AP4Excitatory GABA actionsGlutamate-mediated inhibitionMetabotropic glutamate receptorsSpinal cord neuronsMajor inhibitory neurotransmitterWhole-cell recordingsSimilar inhibitory actionBrain GABAEarly brain developmentExcitatory roleGABA releaseL-AP4Excitatory transmitterGABA actionHypothalamic neuronsCord neurons