2022
Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs
Mineur YS, Mose TN, Vanopdenbosch L, Etherington IM, Ogbejesi C, Islam A, Pineda CM, Crouse RB, Zhou W, Thompson DC, Bentham MP, Picciotto MR. Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs. Molecular Psychiatry 2022, 27: 1829-1838. PMID: 34997190, PMCID: PMC9106825, DOI: 10.1038/s41380-021-01404-7.Peer-Reviewed Original ResearchConceptsStress-related behaviorsCholinergic inputMedial septum/diagonal bandBehavioral effectsBrain ACh levelsChAT-positive neuronsSelective chemogenetic activationMuscarinic ACh receptorsDepression-like symptomsSignificant behavioral effectsHippocampal acetylcholineMaladaptive behavioral responsesAntidepressant effectsCholinergic neuronsACh releaseChemogenetic activationChemogenetic inhibitionCholinergic antagonistsLocal infusionAcetylcholine levelsACh levelsDiagonal bandACh receptorsHippocampal neuronsPharmacological approaches
2020
Local glutamate-mediated dendritic plateau potentials change the state of the cortical pyramidal neuron
Gao PP, Graham JW, Zhou WL, Jang J, Angulo S, Dura-Bernal S, Hines M, Lytton WW, Antic SD. Local glutamate-mediated dendritic plateau potentials change the state of the cortical pyramidal neuron. Journal Of Neurophysiology 2020, 125: 23-42. PMID: 33085562, PMCID: PMC8087381, DOI: 10.1152/jn.00734.2019.Peer-Reviewed Original ResearchConceptsCortical pyramidal neuronsDendritic plateau potentialsPyramidal neuronsPlateau potentialsCell bodiesBasal dendritesAfferent inputDendritic potentialsAction potentialsThin basal dendritesSomatic input resistanceThin dendritic branchesLocal dendritic potentialNeuronal statesGlutamatergic inputsFunctional neuronal ensemblesTau changesCortical neuronsVoltage-sensitive dyeDendritic spikesMembrane time constantStimulation intensityOblique branchNeuronsInput resistance
2018
Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons
Li D, Musante V, Zhou W, Picciotto MR, Nairn AC. Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons. Journal Of Biological Chemistry 2018, 293: 11179-11194. PMID: 29802198, PMCID: PMC6052221, DOI: 10.1074/jbc.ra117.001519.Peer-Reviewed Original ResearchConceptsSerine/threonine phosphatase PP2AStriatin-interacting phosphataseRNA knockdown approachB subunitSTRIPAK complexPhosphatase PP2AProtein phosphataseMultiprotein complexesKnockdown approachStriatin familyMutant constructsStriatal neuronal culturesPP2ANeuronal developmentPrimary striatal neuronal culturesDendritic phenotypeKnockdown modelSynapse formationSubunitsSpine developmentSelective roleReduced expressionNeuron maturationNeuronal culturesStriatal neurons
2017
The stochastic nature of action potential backpropagation in apical tuft dendrites
Short SM, Oikonomou KD, Zhou WL, Acker CD, Popovic MA, Zecevic D, Antic SD. The stochastic nature of action potential backpropagation in apical tuft dendrites. Journal Of Neurophysiology 2017, 118: 1394-1414. PMID: 28566465, PMCID: PMC5558024, DOI: 10.1152/jn.00800.2016.Peer-Reviewed Original ResearchConceptsDendritic CaPyramidal neuronsApical tuftCortical pyramidal neuronsAction potential backpropagationRat brain slicesSpontaneous synaptic inputsDifferent cortical layersVoltage-gated CaAP backpropagationAP burstsGlutamate iontophoresisSynaptic contactsSomatic APsApical trunkAP frequencyBrain slicesDendritic physiologySynaptic inputsCortical layersChannel inactivationLocal NaNeuronsSpike-timing dependent plasticityTrials
2015
Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice
Mineur YS, Bentham MP, Zhou WL, Plantenga ME, McKee SA, Picciotto MR. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice. Psychopharmacology 2015, 232: 3539-3549. PMID: 26146014, PMCID: PMC4561580, DOI: 10.1007/s00213-015-4001-3.Peer-Reviewed Original ResearchConceptsAntidepressant-like effectsPaired-pulse ratioC-Fos immunoreactivityPrefrontal cortexSwim testBrain areasRobust antidepressant-like effectsBrain regionsSex differencesMale C57BL/6J miceDepression-like behaviorEffects of guanfacineAcetylcholinesterase inhibitor physostigmineLight/dark boxBaseline sex differencesC-fos expressionDepression-like stateCritical brain regionsDifferent brain areasSex-specific changesAntidepressant efficacyCholinergic controlInhibitor physostigmineC57BL/6J miceAgonist guanfacine
2012
Palette of fluorinated voltage-sensitive hemicyanine dyes
Yan P, Acker C, Zhou W, Lee P, Bollensdorff C, Negrean A, Lotti J, Sacconi L, Antic S, Kohl P, Mansvelder H, Pavone F, Loew L. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 20443-20448. PMID: 23169660, PMCID: PMC3528613, DOI: 10.1073/pnas.1214850109.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsBiophysical PhenomenaBrainCalcium SignalingCarbocyaninesColoring AgentsDendritic SpinesFemaleFluorescent DyesFluorineGuinea PigsHeartIn Vitro TechniquesMiceMicroscopy, Fluorescence, MultiphotonMolecular StructureOptical PhenomenaPurkinje CellsRatsRats, WistarSpectrophotometryConceptsNew voltage-sensitive dyesVoltage-sensitive dyeOne-photon excitation spectrumOptical recordingTwo-photon excitationAvailable optical technologiesOptical technologiesExcitation spectraEmission spectraExcitation wavelengthRed shiftExcitation rangeExperimental requirementsSingle dendritic spinesHemicyanine dyesFluorine atomsSpectraDendritic spinesChromophoreWavelengthExcitationAtomsVoltageExperimental preparationEmissionDopaminergic Regulation of Dendritic Calcium: Fast Multisite Calcium Imaging
Zhou W, Oikonomou K, Short S, Antic S. Dopaminergic Regulation of Dendritic Calcium: Fast Multisite Calcium Imaging. Methods In Molecular Biology 2012, 964: 123-138. PMID: 23296782, DOI: 10.1007/978-1-62703-251-3_9.Peer-Reviewed Original ResearchConceptsDendritic calcium transientsCalcium transientsDendritic treeNormal cortical functionIndividual cortical neuronsElaborate dendritic treesNeocortical pyramidal neuronsSomatic action potentialsDendritic calciumGlutamatergic inputsPyramidal neuronsDopaminergic drugsDopaminergic regulationCortical neuronsDopaminergic modulationCortical functionExogenous dopamineSynaptic integrationAction potentialsCalcium imagingDopamine toneDendritic compartmentsDopaminergic signalsDendritic branchesCalcium fluctuationsRapid dopaminergic and GABAergic modulation of calcium and voltage transients in dendrites of prefrontal cortex pyramidal neurons
Zhou W, Antic S. Rapid dopaminergic and GABAergic modulation of calcium and voltage transients in dendrites of prefrontal cortex pyramidal neurons. The Journal Of Physiology 2012, 590: 3891-3911. PMID: 22641784, PMCID: PMC3476639, DOI: 10.1113/jphysiol.2011.227157.Peer-Reviewed Original ResearchConceptsDendritic calcium transientsAction potentialsDopamine effectsSame dendriteCalcium transientsPrefrontal cortex pyramidal neuronsT-type calcium channel blockersDendritic calcium influxCortex pyramidal neuronsCalcium channel blockersMidbrain dopaminergic neuronsCalcium-sensitive dyeAP backpropagationDopaminergic stimulationGABAergic modulationPyramidal neuronsDopaminergic neuronsPulses of GABAD1 antagonistDopamine applicationDopaminergic suppressionDopaminergic inputSomatic excitabilityD1 agonistChannel blockers
2010
Brief dopaminergic stimulations produce transient physiological changes in prefrontal pyramidal neurons
Moore A, Zhou W, Potapenko E, Kim E, Antic S. Brief dopaminergic stimulations produce transient physiological changes in prefrontal pyramidal neurons. Brain Research 2010, 1370: 1-15. PMID: 21059342, PMCID: PMC3019254, DOI: 10.1016/j.brainres.2010.10.111.Peer-Reviewed Original ResearchConceptsPyramidal neuronsMidbrain dopaminergic neuronsPrefrontal cortexDopaminergic neuronsLayer 5 pyramidal neuronsRat medial prefrontal cortexAction potential firing ratePFC pyramidal neuronsPrefrontal pyramidal neuronsD1-like receptorsDirect synaptic contactsAction potential firingMedial prefrontal cortexDose-dependent responseDopaminergic stimulationIontophoretic pulsesCortical excitabilitySynaptic contactsDopaminergic agonistsSevere depressionPyramidal cellsTransient physiological changesBrain slicesAction potentialsCell bodiesThe decade of the dendritic NMDA spike
Antic S, Zhou W, Moore A, Short S, Ikonomu K. The decade of the dendritic NMDA spike. Journal Of Neuroscience Research 2010, 88: 2991-3001. PMID: 20544831, PMCID: PMC5643072, DOI: 10.1002/jnr.22444.Peer-Reviewed Original ResearchConceptsDendritic NMDA spikesNMDA spikesPyramidal cellsPlateau potentialsActive synaptic inputsApical tuft dendritesGlutamatergic synaptic contactsThick apical dendritesLong-term synaptic modificationsNeuronal cell bodiesCortical pyramidal cellsSlow-wave sleepCortical UP statesDendritic regenerative potentialsCortical information processingBasal dendritesPyramidal neuronsApical dendritesSynaptic contactsApical trunkTuft dendritesSynaptic inputsProximal segmentThin dendritesAwake animals
2008
Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons
Zhou W, Yan P, Wuskell J, Loew L, Antic S. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons. European Journal Of Neuroscience 2008, 27: 923-936. PMID: 18279369, PMCID: PMC2715167, DOI: 10.1111/j.1460-9568.2008.06075.x.Peer-Reviewed Original ResearchConceptsBasilar dendritic treeBasal dendritesRat prefrontal cortexPyramidal neuronsAction potentialsDendritic treePrefrontal cortical pyramidal neuronsLayer 5 pyramidal neuronsPrefrontal cortexSodium action potentialsBackpropagating action potentialsCortical pyramidal neuronsAction potential backpropagationNeocortical pyramidal neuronsSomatic action potentialsCortical pyramidal cellsDistal dendritic segmentsHigh-frequency burstsVoltage-sensitive dye imaging techniqueAP backpropagationSynaptic contactsIndividual dendritic branchesPyramidal cellsNeuronal outputCalcium transients
2007
Voltage and calcium transients in basal dendrites of the rat prefrontal cortex
Milojkovic B, Zhou W, Antic S. Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. The Journal Of Physiology 2007, 585: 447-468. PMID: 17932150, PMCID: PMC2375496, DOI: 10.1113/jphysiol.2007.142315.Peer-Reviewed Original ResearchConceptsDendritic plateau potentialsCalcium transientsPlateau potentialsBasal dendritesDendritic branchesSmall-amplitude depolarizationThin basal dendritesDendritic calcium transientsGlutamatergic synaptic inputsDendritic calcium dynamicsRat prefrontal cortexHigher cortical functionsThin dendritic branchesNeocortical pyramidal cellsSame dendritic branchCalcium distributionDendritic excitabilitySynaptic contactsIndividual dendritic branchesExcitatory inputsPyramidal cellsCortical functionSynaptic inputsSame dendriteSynaptic integrationIntracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites
Zhou W, Yan P, Wuskell J, Loew L, Antic S. Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. Journal Of Neuroscience Methods 2007, 164: 225-239. PMID: 17560661, PMCID: PMC2001318, DOI: 10.1016/j.jneumeth.2007.05.002.Peer-Reviewed Original Research
2005
A novel artemisinin derivative, 3-(12-β-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects in vitro and in vivo
Zhou W, Wu J, Wu Q, Wang J, Zhou Y, Zhou R, He P, Li X, Yang Y, Zhang Y, Li Y, Zuo J. A novel artemisinin derivative, 3-(12-β-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects in vitro and in vivo. Acta Pharmacologica Sinica 2005, 26: 1352-1358. PMID: 16225758, DOI: 10.1111/j.1745-7254.2005.00232.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Inflammatory Agents, Non-SteroidalArtemisininsCell ProliferationCells, CulturedCytokinesDose-Response Relationship, DrugHemolysisHypersensitivity, DelayedImmunosuppressive AgentsInhibitory Concentration 50Interferon-gammaInterleukin-12Lymphocyte Culture Test, MixedMaleMiceMice, Inbred BALB CMice, Inbred C57BLSuccinatesConceptsDelayed-type hypersensitivityMixed lymphocyte reactionProliferation of splenocytesSheep red blood cellsImmunosuppressive agentsCytokine productionT-cell-mediated delayed-type hypersensitivityImmunosuppressive activityVivo immune activityProinflammatory cytokine productionIL-2 secretionNovel artemisinin derivativesEnzyme-linked immunosorbentDose-dependent mannerStrong immunosuppressive activityPotential immunosuppressive agentsRed blood cellsLymphocyte reactionImmunosuppressive effectsQuantitative hemolysisImmune activityMouse modelArtemisinin derivativesConA stimulationBlood cells(5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo
Zhou R, Zhang F, He P, Zhou W, Wu Q, Xu J, Zhou Y, Tang W, Li X, Yang Y, Li Y, Zuo J. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo. International Immunopharmacology 2005, 5: 1895-1903. PMID: 16275624, DOI: 10.1016/j.intimp.2005.06.009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCell ProliferationCell SurvivalCells, CulturedCytokinesDinitrofluorobenzeneDisease Models, AnimalDiterpenesDrugs, Chinese HerbalFemaleHypersensitivity, DelayedImmunosuppressive AgentsLymphocyte ActivationLymphocyte Culture Test, MixedMaleMiceMice, Inbred BALB CSheepSpleenT-LymphocytesConceptsLLDT-8Immunosuppressive activityBLAB/c miceType hypersensitivity reactionSheep red blood cellsTh1-type cytokinesHumoral immune responseProliferation of splenocytesImmune-related diseasesHigh immunosuppressive activityPotential therapeutic agentNovel triptolide analogRed blood cellsLymphocyte reactionHypersensitivity reactionsImmunosuppressive effectsInflammatory cytokinesLow acute toxicityC miceImmune responseType cytokinesTriptolide analoguesAntibody productionTherapeutic agentsBlood cellsSynthesis and Immunosuppressive Activity of New Artemisinin Derivatives. 1. [12(β or α)-Dihydroartemisininoxy]phen(ox)yl Aliphatic Acids and Esters
Yang Z, Zhou W, Sui Y, Wang J, Wu J, Zhou Y, Zhang Y, He P, Han J, Tang W, Li Y, Zuo J. Synthesis and Immunosuppressive Activity of New Artemisinin Derivatives. 1. [12(β or α)-Dihydroartemisininoxy]phen(ox)yl Aliphatic Acids and Esters. Journal Of Medicinal Chemistry 2005, 48: 4608-4617. PMID: 15999998, DOI: 10.1021/jm048979c.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody FormationArtemisininsB-LymphocytesCell ProliferationConcanavalin ADinitrofluorobenzeneErythrocytesEstersFatty AcidsFemaleHypersensitivity, DelayedImmunosuppressive AgentsIn Vitro TechniquesLipopolysaccharidesMaleMiceMice, Inbred BALB CMitogensSesquiterpenesSheepStructure-Activity RelationshipT-LymphocytesConceptsB cell proliferationSheep red blood cellsT cell proliferationCell proliferationImmunosuppressive activityDelayed-type hypersensitivity reactionCytotoxicity of lymphocytesNew artemisinin derivativesPotential immunosuppressive agentsRed blood cellsImmunosuppressive agentsHypersensitivity reactionsT cellsInhibition activityArtemisinin derivativesAntibody productionCyclosporin ADihydroartemisinin derivativesBlood cellsInhibitory effectHigh efficacyLipopolysaccharideConcanavalin AProliferationHighest inhibition activityInhibition of S-Adenosyl-l-homocysteine Hydrolase Induces Immunosuppression
Wu Q, Fu Y, Zhou W, Wang J, Feng Y, Liu J, Xu J, He P, Zhou R, Tang W, Wang G, Zhou Y, Yang Y, Ding J, Li X, Chen X, Yuan C, Lawson B, Zuo J. Inhibition of S-Adenosyl-l-homocysteine Hydrolase Induces Immunosuppression. Journal Of Pharmacology And Experimental Therapeutics 2005, 313: 705-711. PMID: 15640397, DOI: 10.1124/jpet.104.080416.Peer-Reviewed Original ResearchMeSH KeywordsAdenosylhomocysteinaseAnimalsAntigens, CDB7-1 AntigenB7-2 AntigenCell SurvivalDose-Response Relationship, DrugDown-RegulationEnzyme ActivationEnzyme InhibitorsFemaleGrowth InhibitorsImmunosuppressive AgentsLymphocyte Culture Test, MixedMaleMembrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLConceptsTHP-1 cellsImmunosuppressive effectsTumor necrosis factor-alpha productionDelayed-type hypersensitivity reactionS-adenosyl-L-homocysteine hydrolaseNecrosis factor-alpha productionLevels of CD80IL-12 productionMixed lymphocyte reactionT cell inhibitionHuman monocytic THP-1 cellsThioglycollate-stimulated peritoneal macrophagesT cell functionT cell proliferationImmunosuppressive therapeutic agentsT cell costimulationMonocytic THP-1 cellsDose-dependent mannerImmunologic effectsIL-12Lymphocyte reactionHypersensitivity reactionsCytokine outputMacrophage activationType III inhibitor
2002
Low dose of resveratrol enhanced immune response of mice.
Feng Y, Zhou W, Wu Q, Li X, Zhao W, Zou J. Low dose of resveratrol enhanced immune response of mice. Acta Pharmacologica Sinica 2002, 23: 893-7. PMID: 12370094.Peer-Reviewed Original ResearchConceptsCytokine productionLymphocyte subtypesImmune responseLow doseMHC-II molecule expressionCell-mediated immune responsesLow-dose resveratrolType hypersensitivity responseImmune modulating effectsTh1 cytokine productionIL-10 productionIFN-gamma productionStaphylococcus aureus CowanResponse of miceIL-2 productionProliferation of lymphocytesEar swellingIL-12Hypersensitivity responseLymphocyte proliferationMacrophage percentageMolecule expressionT lymphocytesResveratrol treatmentEthanol consumption