Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links
Fedorov A, Geenjaar E, Wu L, Sylvain T, DeRamus T, Luck M, Misiura M, Mittapalle G, Hjelm R, Plis S, Calhoun V. Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links. NeuroImage 2023, 285: 120485. PMID: 38110045, PMCID: PMC10872501, DOI: 10.1016/j.neuroimage.2023.120485.Peer-Reviewed Original ResearchConceptsBrain regionsMultimodal neuroimaging dataNeuroimaging dataBrain disordersComplex brain disordersMRI dataNeuroimaging researchGroup inferencesDeep InfoMaxSupervised modelsDiagnostic labelsDisordersBrainState-of-the-art unsupervised methodsAlzheimer's phenotypeNovel self-supervised frameworkSelf-supervised frameworkSelf-supervised methodologyCanonical correlation analysisSelf-supervised representationsState-of-the-artDeep learning approachSingle-modal dataMultimode linksComplex brainsAn Explainable and Robust Deep Learning Approach for Automated Electroencephalography-Based Schizophrenia Diagnosis
Sattiraju A, Ellis C, Miller R, Calhoun V. An Explainable and Robust Deep Learning Approach for Automated Electroencephalography-Based Schizophrenia Diagnosis. 2023, 00: 255-259. DOI: 10.1109/bibe60311.2023.00048.Peer-Reviewed Original ResearchConvolutional neural networkRobust deep learning approachBaseline convolutional neural networkChannel lossDeep learning methodsDeep learning modelsDeep learning approachDecision support roleExplainability approachesClassifier performanceRobust modelNeural networkExplainable modelsLearning methodsLearning approachLearning modelsAutomated diagnosisImplementation environmentEEG dataDiagnosis of SZExplainabilityRaw EEGTest dataRobustnessBiomarkers of SZDeep learning with explainability for characterizing age-related intrinsic differences in dynamic brain functional connectivity
Qiao C, Gao B, Liu Y, Hu X, Hu W, Calhoun V, Wang Y. Deep learning with explainability for characterizing age-related intrinsic differences in dynamic brain functional connectivity. Medical Image Analysis 2023, 90: 102941. PMID: 37683445, DOI: 10.1016/j.media.2023.102941.Peer-Reviewed Original ResearchFunctional connectivityBrain functional connectivityBrain networksDynamic brain functional connectivityDeep networksFunctional brain networksInformation processing abilityBrain development studiesEmotional processingDeep learning approachFeature selection strategyMachine learning modelsProcessing abilityBrain developmentCognitive activityDeep learningAccuracy-orientedSound processingBrainDevelopmental patternsLearning approachLearning modelsMental regulationSelection strategyInformation transmission mechanismData-driven multimodal fusion: approaches and applications in psychiatric research
Sui J, Zhi D, Calhoun V. Data-driven multimodal fusion: approaches and applications in psychiatric research. Psychoradiology 2023, 3: kkad026. PMID: 38143530, PMCID: PMC10734907, DOI: 10.1093/psyrad/kkad026.Peer-Reviewed Original ResearchMultimodal fusionFusion methodBig dataMulti-modal fusion methodMulti-modal fusion techniquesImage fusion applicationsEra of big dataMultimodal fusion approachDeep learning approachExtract meaningful insightsIndependent component analysisFusion approachHidden patternsLearning approachFusion techniqueCanonical correlation analysisPrior informationMultiple modalitiesComplex psychiatric disorderN-wayMeaningful insights