2023
Nav1.7 gain-of-function mutation I228M triggers age-dependent nociceptive insensitivity and C-LTMR dysregulation
Wimalasena N, Taub D, Shim J, Hakim S, Kawaguchi R, Chen L, El-Rifai M, Geschwind D, Dib-Hajj S, Waxman S, Woolf C. Nav1.7 gain-of-function mutation I228M triggers age-dependent nociceptive insensitivity and C-LTMR dysregulation. Experimental Neurology 2023, 364: 114393. PMID: 37003485, PMCID: PMC10171359, DOI: 10.1016/j.expneurol.2023.114393.Peer-Reviewed Original ResearchConceptsParoxysmal extreme pain disorderSmall fiber neuropathyFunction mutationsDRG neuron hyperexcitabilityYoung adult miceVoltage-gated sodium channel NaSodium conductanceAge-related changesNeuron hyperexcitabilityPain disordersCongenital insensitivitySodium channel NaExcitability changesFemale miceMouse DRGYoung miceNeuronal excitabilityNoxious heatSkin lesionsVoltage-gated channelsAdult miceNeuron subtypesNervous systemProfound insensitivityMice
2022
Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol
Ghovanloo M, Dib-Hajj S, Goodchild S, Ruben P, Waxman S. Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol. Frontiers In Physiology 2022, 13: 1066455. PMID: 36439273, PMCID: PMC9691960, DOI: 10.3389/fphys.2022.1066455.Peer-Reviewed Original Research
2012
Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system
Shields SD, Ahn H, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj S. Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 2012, 153: 2017-2030. PMID: 22703890, DOI: 10.1016/j.pain.2012.04.022.Peer-Reviewed Original ResearchConceptsPeripheral nervous systemSensory neuronsKnockout mouse phenotypesNervous systemDorsal root ganglion neuronsUnmyelinated sensory afferentsPrimary sensory neuronsLow-threshold mechanoreceptorsMouse peripheral nervous systemGene functionVoltage-gated sodium channelsConditional knockout miceCytoskeletal proteinsIdentity of neuronsNav1.8 expressionMolecular markersDRG neuronsVast diversitySensory afferentsCre miceGanglion neuronsMouse phenotypeNoxious stimuliAβ fibersKnockout miceA channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis
Shields SD, Cheng X, Gasser A, Saab CY, Tyrrell L, Eastman EM, Iwata M, Zwinger PJ, Black JA, Dib‐Hajj S, Waxman SG. A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis. Annals Of Neurology 2012, 71: 186-194. PMID: 22367990, DOI: 10.1002/ana.22665.Peer-Reviewed Original ResearchConceptsMultiple sclerosisCerebellar dysfunctionMouse modelPurkinje neuronsNervous systemNew transgenic mouse modelPurkinje neuron firingDisease-modifying agentsSodium channel Nav1.8Healthy nervous systemPeripheral nervous systemTransgenic mouse modelCerebellar Purkinje neuronsWild-type littermatesNav1.8 expressionNeurons altersSymptom burdenSymptomatic therapySymptom progressionNav1.8Electrophysiological propertiesNeuron firingDysfunctionEAEMotor behavior
2001
Diverse Functions and Dynamic Expression of Neuronal Sodium Channels
Waxman SG, Cummins TR, Black JA, Dib‐Hajj S. Diverse Functions and Dynamic Expression of Neuronal Sodium Channels. Novartis Foundation Symposia 2001, 241: 34-60. PMID: 11771649, DOI: 10.1002/0470846682.ch4.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsChannel gene expressionNervous systemChannel expressionNormal nervous systemTypes of neuronsNeuronal sodium channelsChannel genesChronic painGene expressionMultiple sclerosisPeripheral axonsChannel subtypesMaladaptive changesPathological neuronsNeuronal functionPurkinje cellsTherapeutic opportunitiesExperimental modelAmino acid sequenceSodium channelsNa channelsNeuronsDifferent amino acid sequencesRecent evidenceSelective modulators
2000
Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000.
Waxman S, Dib-Hajj S, Cummins T, Black J. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000. Brain Research 2000, 886: 5-14. PMID: 11119683, DOI: 10.1016/s0006-8993(00)02774-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSodium channel gene expressionSodium channel geneChannel gene expressionChannel genesGene expressionPost-transcriptional levelNormal nervous systemSodium channel expressionSodium channelsChannel expressionMolecular plasticityGenesDynamic expressionCell membraneHypothalamic magnocellular neurosecretory neuronsDifferent repertoiresMultiple sclerosisNervous systemTherapeutic opportunitiesSodium channel subtypesExpressionElectrogenic propertiesRegulationChannel subtypesDysregulationSensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis
Black J, Dib-Hajj S, Baker D, Newcombe J, Cuzner M, Waxman S. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 11598-11602. PMID: 11027357, PMCID: PMC17246, DOI: 10.1073/pnas.97.21.11598.Peer-Reviewed Original ResearchConceptsExperimental allergic encephalomyelitisMultiple sclerosisAllergic encephalomyelitisClinical abnormalitiesChannel expressionPurkinje cellsTrigeminal ganglion neuronsBrains of micePeripheral nervous systemSodium channel expressionIon channel expressionCerebellar Purkinje cellsAbnormal repertoiresAxonal degenerationControl miceGanglion neuronsControl subjectsMouse modelNormal brainAnimal modelsNervous systemNeurological diseasesSodium channelsProtein expressionAbnormal patterns