2023
Conditional Astrocyte Rac1KO Attenuates Hyperreflexia after Spinal Cord Injury
Benson C, Olson K, Patwa S, Kauer S, King J, Waxman S, Tan A. Conditional Astrocyte Rac1KO Attenuates Hyperreflexia after Spinal Cord Injury. Journal Of Neuroscience 2023, 44: e1670222023. PMID: 37963762, PMCID: PMC10851682, DOI: 10.1523/jneurosci.1670-22.2023.Peer-Reviewed Original ResearchConceptsSpinal cord injuryRate-dependent depressionΑ-motor neuronsGlutamate transporter 1Dendritic spine dysgenesisCord injurySpine dysgenesisDevelopment of SCIMild contusion spinal cord injuryAstrocytic glutamate transporter 1Glial-specific glutamate transporterContusion spinal cord injuryTransporter 1Development of hyperreflexiaMonosynaptic H-reflexDendritic spine densityPre-injury levelSpinal reflex circuitsVentral spinal cordReflex hyperexcitabilityHyperexcitability disordersFunctional recoveryGlutamate clearanceH-reflexVentral horn
1997
Spinal Cord Repair: Progress Towards a Daunting Goal
Waxman S, Kocsis J. Spinal Cord Repair: Progress Towards a Daunting Goal. The Neuroscientist 1997, 3: 263-269. DOI: 10.1177/107385849700300414.Peer-Reviewed Original ResearchSpinal cord repairSpinal cordHuman spinal cord injuryUse of neurotrophinsSpinal cord injuryMyelin-forming glial cellsSpinal cord tractsFunctional recoveryNerve graftsAnatomical repairCord injuryGlial cellsAnimal modelsWhite matterGray matterClinical goalsCordInjuryPartial restorationRepairDaunting goalTransplantationNeurotrophinsGraftCNS
1992
Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter
Stys P, Waxman S, Ransom B. Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter. Cerebrovascular And Brain Metabolism Reviews 1992, 12: 977-986. PMID: 1400652, DOI: 10.1038/jcbfm.1992.135.Peer-Reviewed Original ResearchConceptsFunctional recoveryWhite matterAnoxic injuryMin of anoxiaOptic nerveFunctional outcomeTypical CNS white matter tractAnoxic exposureIntracellular Ca2Anoxic/ischemic injuryCNS white matter tractCompound action potential areaGray matterIsolated rat optic nerveGreater functional recoveryEvoked electrical activityAction potential areaCNS white matterRat optic nerveWhite matter tractsFunctional injuryIschemic injuryPathological increaseAnoxic damageCAP peak
1991
Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter
Stys P, Waxman S, Ransom B. Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals Of Neurology 1991, 30: 375-380. PMID: 1952825, DOI: 10.1002/ana.410300309.Peer-Reviewed Original ResearchConceptsWhite matterIsolated rat optic nerveCentral nervous system white matterNervous system white matterWhite matter injuryRat optic nerveMammalian central nervous systemSevere neurological impairmentCompound action potentialType of injuryCentral nervous systemFunctional recoveryOptic nervePharmacological blockadeNeurological impairmentAnoxic injuryIrreversible injuryNervous systemAction potentialsInjuryInfluxCa2Critical mechanismCellsNerve
1989
Demyelination in spinal cord injury
Waxman S. Demyelination in spinal cord injury. Journal Of The Neurological Sciences 1989, 91: 1-14. PMID: 2664092, DOI: 10.1016/0022-510x(89)90072-5.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCord injuryDemyelinated axonsFunctional recoveryCompressive spinal cord injuryAbsence of remyelinationRecovery of conductionRecovery of functionSmall-diameter axonsModification of conductionHemorrhagic necrosisPathophysiological basisClinical criteriaComplete transectionSchwann cellsDemyelinationDiameter axonsAction potentialsInjuryDemyelinated fibersAxonsRemyelinationNeurophysiological evidencePhysiological studiesTransection
1988
Nonpyramidal Motor Systems and Functional Recovery After Damage to the Central Nervous System
Waxman S. Nonpyramidal Motor Systems and Functional Recovery After Damage to the Central Nervous System. Neurorehabilitation And Neural Repair 1988, 2: 1-6. DOI: 10.1177/136140968800200101.Peer-Reviewed Original ResearchLateral corticospinal tractCentral nervous systemCorticospinal tractProximal musculatureNervous systemMotor systemProximal limb musculatureResidual motor functionMotor controlCorticobulbar pathwaysMost patientsDistal musclesCortical lesionsFunctional recoveryBilateral innervationMotor cortexMotor functionMotor neuronsMaintenance of postureClinical observationsUnilateral damageBilateral damagePatientsNeurological diseasesMotor response
1985
Neurogenesis in Adult Vertebrate Spinal Cord in Situ and in Vitro: A New Model Systema
ANDERSON M, WAXMAN S. Neurogenesis in Adult Vertebrate Spinal Cord in Situ and in Vitro: A New Model Systema. Annals Of The New York Academy Of Sciences 1985, 457: 213-233. PMID: 3913365, DOI: 10.1111/j.1749-6632.1985.tb20807.x.Peer-Reviewed Original ResearchConceptsSpinal cordEpendymal cellsNeuron-specific monoclonal antibodiesSpinal cord tissueSternarchus albifronsStudy of neurogenesisFunctional recoveryNew neuronsCord tissuePositive stainingRecent studiesCultured neuronsCordInjuryNeurogenesisMonoclonal antibodiesNeuronal differentiationNormal morphologic structureCNSExplant culturesNeuronsVertebrate spinal cordSternarchusNew spinal cordNeuronal identity
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturation