2017
How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin
Krimmer S, Cramer J, Schiebel J, Heine A, Klebe G. How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin. Journal Of The American Chemical Society 2017, 139: 10419-10431. PMID: 28696673, DOI: 10.1021/jacs.7b05028.Peer-Reviewed Original ResearchConceptsWater moleculesPresent water moleculesWeak-binding ligandsAliphatic side chainsSpecificity pocketIsothermal titration calorimetrySolvent moleculesHigh-resolution crystallographyActive siteHydrophobic ligand bindingCrystalline stateElectron density mapsSide chainsTitration calorimetryS1 pocketNoble gas atomsSubstituentsThermodynamic signaturesFree energyHydration stateMoleculesLigands
2014
Methyl, Ethyl, Propyl, Butyl: Futile But Not for Water, as the Correlation of Structure and Thermodynamic Signature Shows in a Congeneric Series of Thermolysin Inhibitors
Krimmer S, Betz M, Heine A, Klebe G. Methyl, Ethyl, Propyl, Butyl: Futile But Not for Water, as the Correlation of Structure and Thermodynamic Signature Shows in a Congeneric Series of Thermolysin Inhibitors. ChemMedChem 2014, 9: 833-846. PMID: 24623396, DOI: 10.1002/cmdc.201400013.Peer-Reviewed Original ResearchConceptsWater moleculesFirst solvation layerThermodynamic binding profilesProtein-ligand binding processHigh-resolution crystal structuresIsothermal titration calorimetrySolvation patternsCorrelation of structureSolvation layerEntropy-driven bindingThermolysin inhibitorsCongeneric seriesSingle methyl groupCrystal structureWater arrangementSolvent-exposed surfaceTitration calorimetryBinding processMethyl groupS2 pocketSubstituentsComplex formationBinding propertiesLigand binding propertiesBiological systems