2022
Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw
de Mello FDSB, Maneira C, Suarez FUL, Nagamatsu S, Vargas B, Vieira C, Secches T, Coradini ALV, de Carvalho Silvello M, Goldbeck R, Pereira GAG, Teixeira GS. Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw. Journal Of Genetic Engineering And Biotechnology 2022, 20: 80. PMID: 35612634, PMCID: PMC9133290, DOI: 10.1186/s43141-022-00359-8.Peer-Reviewed Original ResearchXylose reductaseS. cerevisiaeBrazilian bioethanol industryIndustrial S. cerevisiaeMajor yeastGenomic integrationNucleotide sequenceCRISPR editingGenetic engineeringInhibitor toleranceXylitol productionIndustrial strainsRobust chassisHigh economic valueNADPH availabilityNADPH cofactorAvailable cofactorsRational engineeringRedox environmentGenetic backgroundXylitol titerHemicellulosic materialLaboratory strainsFermentation performanceCerevisiae
2021
Ethanol production process driving changes on industrial strains
Nagamatsu ST, Coutouné N, José J, Fiamenghi MB, Pereira GAG, de Castro Oliveira J, Carazzolle MF. Ethanol production process driving changes on industrial strains. FEMS Yeast Research 2021, 21: foaa071. PMID: 33417685, DOI: 10.1093/femsyr/foaa071.Peer-Reviewed Original ResearchConceptsMain evolutionary driversEthanol production processMore robust strainsStress response genesSugarcane fermentationEthanol titerEthanol RedEthanol productionEvolutionary driversIndustrial yeastIndustrial fermentationMaltose transporterGenome adaptationEngineering strategiesPhylogenetic treeCorn fermentationPositive selectionSaccharomyces cerevisiaeMetal homeostasisIndustrial strainsResponse genesBiofuel productionRobust strainsNumber of copiesGenes
2016
Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains
dos Santos LV, Carazzolle MF, Nagamatsu ST, Sampaio NM, Almeida LD, Pirolla RA, Borelli G, Corrêa TL, Argueso JL, Pereira GA. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Scientific Reports 2016, 6: 38676. PMID: 28000736, PMCID: PMC5175268, DOI: 10.1038/srep38676.Peer-Reviewed Original ResearchConceptsXylose fermentationAdaptive evolutionSecond-generation ethanol productionDevelopment of biocatalystsXylose isomerase geneRobust industrial strainsSecond-generation ethanolIron-sulfur clustersFive-carbon sugarsEngineered SaccharomycesMetabolic engineeringEssential genesEthanol productionXylose consumptionScaffold proteinRegulatory networksXylose utilizationIsomerase geneGenetic basisViable productionIndustrial strainsEthanol/Yeast cellsPentose metabolismGenes