2022
Efficacy of FLT3 and IDH1/2 inhibitors in patients with acute myeloid leukemia previously treated with venetoclax
Bewersdorf JP, Shallis RM, Derkach A, Goldberg AD, Stein A, Stein EM, Marcucci G, Zeidan AM, Shimony S, DeAngelo DJ, Stone RM, Aldoss I, Ball BJ, Stahl M. Efficacy of FLT3 and IDH1/2 inhibitors in patients with acute myeloid leukemia previously treated with venetoclax. Leukemia Research 2022, 122: 106942. PMID: 36108424, DOI: 10.1016/j.leukres.2022.106942.Peer-Reviewed Original ResearchConceptsAcute myeloid leukemiaIDH2 inhibitorsMyeloid leukemiaResponse rateRetrospective cohort studyOverall response rateRAS pathway mutationsNovel therapeutic strategiesMedian OSR AMLCohort studyShorter OSLandmark trialsTargeted agentsFrontline treatmentMutant FLT3Combination therapyTreatment optionsIDH1/2 inhibitorsDisease progressionTherapeutic strategiesPatientsSmall molecule inhibitorsVenetoclaxTherapy
2020
Maintenance therapy for acute myeloid leukemia: sustaining the pursuit for sustained remission.
Shallis RM, Podoltsev NA. Maintenance therapy for acute myeloid leukemia: sustaining the pursuit for sustained remission. Current Opinion In Hematology 2020, 28: 110-121. PMID: 33394722, DOI: 10.1097/moh.0000000000000637.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAntineoplastic AgentsAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, TumorClinical Decision-MakingCombined Modality TherapyDisease ManagementDisease SusceptibilityHematopoietic Stem Cell TransplantationHumansLeukemia, Myeloid, AcuteMaintenance ChemotherapyRandomized Controlled Trials as TopicRemission InductionTreatment OutcomeConceptsAcute myeloid leukemiaMaintenance therapyMeasurable residual diseaseMyeloid leukemiaOral hypomethylating agentPost-transplant settingImmune checkpoint inhibitorsPlacebo-controlled trialHigh-risk diseaseAML patient populationRecent positive findingsMRD statusSustained remissionCheckpoint inhibitorsAML patientsRandomized trialsResidual diseasePatient populationHypomethylating agentMRD techniquesTherapyPositive findingsPatientsBcl-2RemissionImmune checkpoint inhibition in myeloid malignancies: Moving beyond the PD-1/PD-L1 and CTLA-4 pathways
Bewersdorf JP, Shallis RM, Zeidan AM. Immune checkpoint inhibition in myeloid malignancies: Moving beyond the PD-1/PD-L1 and CTLA-4 pathways. Blood Reviews 2020, 45: 100709. PMID: 32487480, DOI: 10.1016/j.blre.2020.100709.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsImmune checkpoint inhibitorsMyeloid malignanciesPD-1/PD-L1CTLA-4 pathwayImmune checkpoint inhibitionAcute myeloid leukemiaSafe combination therapyICI therapyImmunologic landscapeCheckpoint inhibitorsDisease coursePD-L1Checkpoint inhibitionMyelodysplastic syndromeCombination therapyMechanisms of resistanceClinical trialsMyeloid leukemiaClinical developmentPotential biomarkersNovel targetPatientsMalignancyTherapyBiomarkers
2019
Hedgehog pathway inhibition as a therapeutic target in acute myeloid leukemia
Shallis RM, Bewersdorf JP, Boddu PC, Zeidan AM. Hedgehog pathway inhibition as a therapeutic target in acute myeloid leukemia. Expert Review Of Anticancer Therapy 2019, 19: 717-729. PMID: 31422721, DOI: 10.1080/14737140.2019.1652095.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAcute myeloid leukemiaHh pathway inhibitorsMyeloid leukemiaSurvival of AMLPathway inhibitorHh pathwayPoor-risk diseaseHedgehog pathway inhibitionStem cellsCombination therapyClinical trialsFirst approvalTherapeutic strategiesTherapeutic targetPathway inhibitionHematopoietic stem cellsNeoplasm therapyOlder populationTherapyHedgehog pathwayFurther studiesLeukemiaNormal hematopoiesisAdult stem cellsInhibitors