2011
Targeted Disruption of the CCR5 Gene in Human Hematopoietic Stem Cells Stimulated by Peptide Nucleic Acids
Schleifman EB, Bindra R, Leif J, del Campo J, Rogers FA, Uchil P, Kutsch O, Shultz LD, Kumar P, Greiner DL, Glazer PM. Targeted Disruption of the CCR5 Gene in Human Hematopoietic Stem Cells Stimulated by Peptide Nucleic Acids. Cell Chemical Biology 2011, 18: 1189-1198. PMID: 21944757, PMCID: PMC3183429, DOI: 10.1016/j.chembiol.2011.07.010.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsHIV-1CCR5 geneHIV-1-infected individualsHIV-1 infectionGene modificationHIV-1 entryCCR5-Delta32 mutationImmune system functionStem cellsCCR5 knockoutMonths posttransplantationChemokine receptorsHuman hematopoietic stem cellsTherapeutic strategiesSubsequent engraftmentGenome modificationProtein levelsHuman cellsTargeted disruptionCCR5Peptide nucleic acidInfectionNucleic acidsCells
2009
Targeting the DNA damage response for cancer therapy
Powell SN, Bindra RS. Targeting the DNA damage response for cancer therapy. DNA Repair 2009, 8: 1153-1165. PMID: 19501553, DOI: 10.1016/j.dnarep.2009.04.011.Peer-Reviewed Original ResearchConceptsDNA damage responseCell cycle checkpointsDouble-strand breaksGenome integrityGenomic integrityHistone modificationsDamage responseCycle checkpointsDNA repairKey proteinsDNA damageAnti-cancer agentsHuman tumorsNew anti-cancer agentsPathwayCancer therapyTumor cellsCheckpointProteinTherapeutic interventionsRepairIntegrityDefectsCellsAppropriate response
2006
Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression
Huang LE, Bindra RS, Glazer PM, Harris AL. Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression. Journal Of Molecular Medicine 2006, 85: 139-148. PMID: 17180667, DOI: 10.1007/s00109-006-0133-6.Peer-Reviewed Original Research
2005
Hypoxia-Induced Phosphorylation of Chk2 in an Ataxia Telangiectasia Mutated–Dependent Manner
Gibson SL, Bindra RS, Glazer PM. Hypoxia-Induced Phosphorylation of Chk2 in an Ataxia Telangiectasia Mutated–Dependent Manner. Cancer Research 2005, 65: 10734-10741. PMID: 16322218, DOI: 10.1158/0008-5472.can-05-1160.Peer-Reviewed Original ResearchConceptsDNA repairAtaxia telangiectasiaSerine/threonine kinaseDNA damageRelated kinase ATMKinase ataxia telangiectasiaNBS1-dependent mannerDNA repair factorsPhosphorylation of Chk2Hypoxic growth conditionsKinase ATMThreonine kinaseChk2 activationReplication forksRepair factorsChk2Apoptotic pathwayCell survivalNovel pathwayCycle arrestPhosphorylationGrowth conditionsDependent mannerPathwayCells