2005
Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue
Leffler A, Herzog RI, Dib-Hajj SD, Waxman SG, Cummins TR. Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflügers Archiv - European Journal Of Physiology 2005, 451: 454-463. PMID: 15981012, DOI: 10.1007/s00424-005-1463-x.Peer-Reviewed Original ResearchNav1.6 channels generate resurgent sodium currents in spinal sensory neurons
Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG. Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Letters 2005, 579: 2166-2170. PMID: 15811336, DOI: 10.1016/j.febslet.2005.03.009.Peer-Reviewed Original ResearchConceptsResurgent sodium currentsResurgent currentsDRG neuronsLarge-diameter dorsal root ganglion neuronsSodium currentDorsal root ganglion neuronsSmall DRG neuronsSpinal sensory neuronsWild-type miceCerebellar Purkinje neuronsVoltage-gated sodium channelsGanglion neuronsSensory neuronsPurkinje neuronsNull miceNav1.6 channelsNeuronsSodium channelsMiceCell background
2003
Calmodulin Binds to the C Terminus of Sodium Channels Nav1.4 and Nav1.6 and Differentially Modulates Their Functional Properties
Herzog RI, Liu C, Waxman SG, Cummins TR. Calmodulin Binds to the C Terminus of Sodium Channels Nav1.4 and Nav1.6 and Differentially Modulates Their Functional Properties. Journal Of Neuroscience 2003, 23: 8261-8270. PMID: 12967988, PMCID: PMC6740705, DOI: 10.1523/jneurosci.23-23-08261.2003.Peer-Reviewed Original ResearchConceptsVoltage-gated sodium channelsSodium channelsNeuronal sodium channelsCalcium-independent mechanismVGSC isoformsNeuronal plasticityCell excitabilityNav1.6 channelsNav1.6Overexpression of CaMCalcium-dependent mannerCalcium-independent mannerNav1.4Sodium channel Nav1.4Channel Nav1.4Functional expressionCurrent amplitudeDistinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons
Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG. Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. The Journal Of Physiology 2003, 551: 741-750. PMID: 12843211, PMCID: PMC2343279, DOI: 10.1113/jphysiol.2003.047357.Peer-Reviewed Original ResearchAnesthetics, LocalAnimalsCells, CulturedGanglia, SpinalIon Channel GatingKineticsMiceMice, Mutant StrainsNAV1.6 Voltage-Gated Sodium ChannelNAV1.7 Voltage-Gated Sodium ChannelNAV1.8 Voltage-Gated Sodium ChannelNerve Tissue ProteinsNeurons, AfferentPatch-Clamp TechniquesRecombinant ProteinsSodium ChannelsTetrodotoxinThe pentapeptide QYNAD does not block voltage-gated sodium channels
Cummins TR, Renganathan M, Stys PK, Herzog RI, Scarfo K, Horn R, Dib-Hajj SD, Waxman SG. The pentapeptide QYNAD does not block voltage-gated sodium channels. Neurology 2003, 60: 224-229. PMID: 12552035, DOI: 10.1212/01.wnl.0000042423.36650.bd.Peer-Reviewed Original ResearchConceptsVoltage-gated sodium channelsSodium channelsDifferent sodium channel subtypesSodium currentDorsal root ganglion neuronsInflammatory neurologic disordersMajor sodium channelPatch-clamp recordingsSodium channel subtypesSodium channel functionNodes of RanvierPentapeptide QYNADOptic nerveGanglion neuronsIntact neuronsNeurologic disordersQYNADChannel subtypesHuman CSFAbnormal myelinFiber tractsElevated levelsEndogenous pentapeptideMicro MChannel function
2001
Persistent TTX-Resistant Na+ Current Affects Resting Potential and Response to Depolarization in Simulated Spinal Sensory Neurons
Herzog RI, Cummins TR, Waxman SG. Persistent TTX-Resistant Na+ Current Affects Resting Potential and Response to Depolarization in Simulated Spinal Sensory Neurons. Journal Of Neurophysiology 2001, 86: 1351-1364. PMID: 11535682, DOI: 10.1152/jn.2001.86.3.1351.Peer-Reviewed Original ResearchConceptsPersistent TTX-R currentTTX-R currentsSmall DRG neuronsSodium currentDRG neuronsSmall dorsal root ganglion neuronsTTX-resistant sodium currentsDorsal root ganglion neuronsVoltage-gated sodium currentTetrodotoxin-sensitive sodium currentTTX-S currentsSpinal sensory neuronsGanglion neuronsNeuronal excitabilitySensory neuronsAction potentialsNeuronsSubthreshold stimuliDepolarizing phaseSpike electrogenesisAnode break excitationElectrogenic propertiesBreak excitationPossible contributionInactivation gateNav1.3 Sodium Channels: Rapid Repriming and Slow Closed-State Inactivation Display Quantitative Differences after Expression in a Mammalian Cell Line and in Spinal Sensory Neurons
Cummins TR, Aglieco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG. Nav1.3 Sodium Channels: Rapid Repriming and Slow Closed-State Inactivation Display Quantitative Differences after Expression in a Mammalian Cell Line and in Spinal Sensory Neurons. Journal Of Neuroscience 2001, 21: 5952-5961. PMID: 11487618, PMCID: PMC6763143, DOI: 10.1523/jneurosci.21-16-05952.2001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxotomyBiolisticsCells, CulturedGanglia, SpinalGene ExpressionGenes, ReporterHumansIon Channel GatingKidneyMaleMembrane PotentialsMutagenesis, Site-DirectedNeurons, AfferentPatch-Clamp TechniquesPolymerase Chain ReactionProtein SubunitsRatsReaction TimeSodiumSodium ChannelsSpinal CordTetrodotoxinConceptsNav1.3 channelsRapid reprimingHEK-293 cellsDRG neuronsTTX-sensitive sodium currentDorsal root ganglion neuronsNav1.3 sodium channelsSodium channelsSpinal sensory neuronsVoltage-gated sodium channelsSteady-state inactivationLarger ramp currentsHuman embryonic kidney 293 cellsPeripheral axotomyEmbryonic kidney 293 cellsGanglion neuronsSlow depolarizationSensory neuronsVoltage-dependent propertiesKidney 293 cellsSodium currentRamp currentsNav1.3NeuronsBeta2 subunit