Whole exome sequencing (WES) of multiple spatially distinct biopsies from single metastatic lesions to evaluate tumour heterogeneity and identify actionable truncal mutations (ATMs) in patients (pts) with advanced solid malignancies using a radiologically-guided single-pass percutaneous technique.
Heong V, Wee B, Goh S, Tay D, Lee X, Soo R, Lim J, Sundar R, Chee C, Lee S, Ow S, Goh B, Yong W, Wong A, Gopinathan A, Lim D, Pang B, Feroz M, Soong R, Tan D. Whole exome sequencing (WES) of multiple spatially distinct biopsies from single metastatic lesions to evaluate tumour heterogeneity and identify actionable truncal mutations (ATMs) in patients (pts) with advanced solid malignancies using a radiologically-guided single-pass percutaneous technique. Journal Of Clinical Oncology 2017, 35: 2550-2550. DOI: 10.1200/jco.2017.35.15_suppl.2550.Peer-Reviewed Original ResearchTumor mutational burdenWhole-exome sequencingMetastatic lesionsNSCLC ptsHigh tumor mutational burdenEvaluate tumor heterogeneityCheckpoint inhibitorsStable diseaseTumor shrinkageTruncal mutationsCore biopsyMutational burdenSolid malignanciesComplication rateNon-synonymous variantsTumor heterogeneityIntratumoral heterogeneitySubclonal diversityGenomic profilingPercutaneous techniquesExome sequencingMutational heterogeneityAkt inhibitorMedian amountPoor quality DNA