2018
The Nature of Parvoviruses
Tattersall P, Cotmore S. The Nature of Parvoviruses. 2018, 5-41. DOI: 10.1201/9781351075404-2.Peer-Reviewed Original Research
2017
Cryo-EM maps reveal five-fold channel structures and their modification by gatekeeper mutations in the parvovirus minute virus of mice (MVM) capsid
Subramanian S, Organtini LJ, Grossman A, Domeier PP, Cifuente JO, Makhov AM, Conway JF, D'Abramo A, Cotmore SF, Tattersall P, Hafenstein S. Cryo-EM maps reveal five-fold channel structures and their modification by gatekeeper mutations in the parvovirus minute virus of mice (MVM) capsid. Virology 2017, 510: 216-223. PMID: 28750325, PMCID: PMC5601314, DOI: 10.1016/j.virol.2017.07.015.Peer-Reviewed Original ResearchThe MVMp P4 promoter is a host cell-type range determinant in vivo
Meir C, Mincberg M, Rostovsky I, Tal S, Vollmers EM, Levi A, Tattersall P, Davis C. The MVMp P4 promoter is a host cell-type range determinant in vivo. Virology 2017, 506: 141-151. PMID: 28391161, DOI: 10.1016/j.virol.2017.03.012.Peer-Reviewed Original Research
2014
Complementation for an essential ancillary non-structural protein function across parvovirus genera
Mihaylov IS, Cotmore SF, Tattersall P. Complementation for an essential ancillary non-structural protein function across parvovirus genera. Virology 2014, 468: 226-237. PMID: 25194919, PMCID: PMC4254310, DOI: 10.1016/j.virol.2014.07.043.Peer-Reviewed Original ResearchConceptsCell cycle progressionAncillary proteinsProtein functionDNA replicationReplication centersNP1 proteinPrimary sequenceFunctional overlapProtein NS2Cycle progressionGenus BocaparvovirusGenus ProtoparvovirusLate defectsNP1 inductionParvovirus genusVirion productionMinute virusSpecific defectsCell populationsUninfected cellsGenusCell viabilityProteinHuman bocavirus 1NP1 expressionParvoviridae: General Features☆
Cotmore S, Tattersall P. Parvoviridae: General Features☆. 2014 DOI: 10.1016/b978-0-12-801238-3.02641-6.Peer-Reviewed Original Research
2013
Distinct host cell fates for human malignant melanoma targeted by oncolytic rodent parvoviruses
Vollmers EM, Tattersall P. Distinct host cell fates for human malignant melanoma targeted by oncolytic rodent parvoviruses. Virology 2013, 446: 37-48. PMID: 24074565, PMCID: PMC3811133, DOI: 10.1016/j.virol.2013.07.013.Peer-Reviewed Original ResearchConceptsPrimary human melanoma cellsPatient-derived melanoma cell linesCurrent therapeutic regimensHuman malignant melanomaRodent parvovirusesHuman melanoma cellsLow response rateMelanoma cell linesOncolytic parvovirusTherapeutic regimensMetastatic melanomaMalignant melanomaResponse rateVirion uptakeViral protein synthesisHost cell fateChimeric virusesMelanoma cellsComplete lysisCell linesMelanomaViral transcriptionParvovirusProgeny virionsLow multiplicityParvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation
Li L, Cotmore SF, Tattersall P. Parvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation. Journal Of Virology 2013, 87: 10501-10514. PMID: 23903839, PMCID: PMC3807388, DOI: 10.1128/jvi.01393-13.Peer-Reviewed Original ResearchConceptsDNA replicationA9 cellsC-terminal transactivation domainCapsid gene expressionProtein expressionWild-type virionsProgeny virion productionP38 promoterTransactivation domainTranscription complexInfectious plasmid cloneGenome encapsidationGenome packagingAbsence of progenyGene expressionPlasmid clonesTranscription templateMutant virionsNonstructural proteinsReplacement vectorViral transcriptionViral transcriptsSuch complementationVirion stabilityDuplex DNAParvovirus evades interferon-dependent viral control in primary mouse embryonic fibroblasts
Mattei LM, Cotmore SF, Tattersall P, Iwasaki A. Parvovirus evades interferon-dependent viral control in primary mouse embryonic fibroblasts. Virology 2013, 442: 20-27. PMID: 23676303, PMCID: PMC3767977, DOI: 10.1016/j.virol.2013.03.020.Peer-Reviewed Original ResearchConceptsType I IFNsI IFNsI interferonIFN responseAntiviral immune mechanismsType I interferonInnate defense mechanismsMouse embryonic fibroblastsMVMp infectionViral controlImmune mechanismsInnate sensingAntiviral programViral replicationViral sensorsMurine parvovirusPoly (I:C) stimulationVirusEmbryonic fibroblastsType IMiceDefense mechanismsMinute virusMVMpPrimary mouse embryonic fibroblasts
2011
Mutations at the Base of the Icosahedral Five-Fold Cylinders of Minute Virus of Mice Induce 3′-to-5′ Genome Uncoating and Critically Impair Entry Functions
Cotmore SF, Tattersall P. Mutations at the Base of the Icosahedral Five-Fold Cylinders of Minute Virus of Mice Induce 3′-to-5′ Genome Uncoating and Critically Impair Entry Functions. Journal Of Virology 2011, 86: 69-80. PMID: 22013064, PMCID: PMC3255873, DOI: 10.1128/jvi.06119-11.Peer-Reviewed Original ResearchConceptsSubgenomic DNAWild typeAnalysis of progenyMinute virusVP2 N-terminusDNA genomeAccumulation of virionsUncoating reactionGenome releaseImpaired mutantsEndosomal compartmentsEntry defectN-terminusVirion assemblyMutantsProtein capsidGenome uncoatingCation depletionBilayer penetrationCell entryDNAGenomeVP1 domainTerminusProteolysisThe parvoviral capsid controls an intracellular phase of infection essential for efficient killing of stepwise-transformed human fibroblasts
Paglino J, Tattersall P. The parvoviral capsid controls an intracellular phase of infection essential for efficient killing of stepwise-transformed human fibroblasts. Virology 2011, 416: 32-41. PMID: 21600623, PMCID: PMC3112476, DOI: 10.1016/j.virol.2011.04.015.Peer-Reviewed Original ResearchStructure of a Packaging-Defective Mutant of Minute Virus of Mice Indicates that the Genome Is Packaged via a Pore at a 5-Fold Axis
Plevka P, Hafenstein S, Li L, D'Abrgamo A, Cotmore SF, Rossmann MG, Tattersall P. Structure of a Packaging-Defective Mutant of Minute Virus of Mice Indicates that the Genome Is Packaged via a Pore at a 5-Fold Axis. Journal Of Virology 2011, 85: 4822-4827. PMID: 21367911, PMCID: PMC3126206, DOI: 10.1128/jvi.02598-10.Peer-Reviewed Original Research
2010
Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM)
Ruiz Z, Mihaylov IS, Cotmore SF, Tattersall P. Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM). Virology 2010, 410: 375-384. PMID: 21193212, PMCID: PMC3072075, DOI: 10.1016/j.virol.2010.12.009.Peer-Reviewed Original ResearchConceptsViral replication centersDamage responseReplication centersDamage response proteinsMutant infectionDNA damage responsePhosphorylation of ATRNS2 mutantsProtein recruitmentViral DNA amplificationATM activationCellular proteinsDNA replicationReplication factorsResponse proteinsBody maturationA9 cellsMVM infectionMinute virusWidespread associationWestern transferDNA amplificationMechanism of actionProteinRecruitmentParvoviruses
Tattersall P, Cotmore S. Parvoviruses. 2010 DOI: 10.1002/9780470688618.taw0227.Peer-Reviewed Original Research
2008
Human Bocavirus: a Newly Discovered Human Parvovirus
Kahn J, Tattersall P. Human Bocavirus: a Newly Discovered Human Parvovirus. 2008, 21-38. DOI: 10.1128/9781555815592.ch2.Peer-Reviewed Original ResearchSevere acute respiratory syndrome-associated coronavirusPopulation-based surveillance studyRespiratory tract infectionsNew respiratory virusesRespiratory viral pathogensCause of morbiditySerum of childrenRespiratory tract diseaseViral pathogensNovel human polyomavirusesHBoV DNATract infectionsRespiratory virusesRespiratory secretionsHuman bocavirusHuman metapneumovirusRespiratory specimensTract diseaseHBoVViral life cycleSurveillance studyHuman polyomavirusesHuman rhinovirusHuman parvovirusPneumoniaParvoviruses: General Features
Tattersall P. Parvoviruses: General Features. 2008, 90-97. DOI: 10.1016/b978-012374410-4.00463-5.Peer-Reviewed Original ResearchDNA replication initiator proteinParvovirus DNA replicationReplication initiator proteinSubfamily DensovirinaeArthropod speciesInitiator proteinDNA replicationSubfamily ParvovirinaeDNA genomeCoding sequenceGenetic strategiesNonenveloped virusesGenomic moleculesVertebrate hostsExpression cassetteTerminal repeatFamily ParvoviridaeGenusTerminal hairpinsStructural polypeptidesDensovirinaeSequenceGenomeInsectsTelomeres
2005
Structure and organization of the viral genome
Cotmore S, Tattersall P. Structure and organization of the viral genome. 2005, 73-94. DOI: 10.1201/b13393-11.Peer-Reviewed Original ResearchA rolling-hairpin strategy
Cotmore S, Tattersall P. A rolling-hairpin strategy. 2005, 171-188. DOI: 10.1201/b13393-19.Peer-Reviewed Original ResearchIntroduction
Cotmore S, Tattersall P. Introduction. 2005, 71-72. DOI: 10.1201/b13393-10.Peer-Reviewed Original Research
2003
Parvoviruses
Tattersall P, Cotmore S. Parvoviruses. 2003 DOI: 10.1038/npg.els.0000423.Peer-Reviewed Original Research
2001
A consensus DNA recognition motif for two KDWK transcription factors identifies flexible-length, CpG-methylation sensitive cognate binding sites in the majority of human promoters11Edited by M. Yaniv
Burnett E, Christensen J, Tattersall P. A consensus DNA recognition motif for two KDWK transcription factors identifies flexible-length, CpG-methylation sensitive cognate binding sites in the majority of human promoters11Edited by M. Yaniv. Journal Of Molecular Biology 2001, 314: 1029-1039. PMID: 11743720, DOI: 10.1006/jmbi.2000.5198.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsBase SequenceBinding SitesConsensus SequenceCpG IslandsDimerizationDNADNA MethylationDNA-Binding ProteinsElectrophoretic Mobility Shift AssayHeLa CellsHumansKineticsMolecular WeightPromoter Regions, GeneticProtein BindingProtein SubunitsResponse ElementsSubstrate SpecificityTranscription FactorsConceptsParvovirus initiation factorTranscription factorsDNA recognition motifDNA-binding heterodimersParvoviral DNA replicationTranscriptional start siteCellular transcription factorsEukaryotic genomesProtein complexesDNA replicationM. YanivInitiation factorsStart siteCpG methylationHuman promotersRecognition motifCytosine residuesRecombinant baculovirusSelection experimentsElement upstreamC residuesHeLa cellsPromoterHeterodimersHost factors